биохимия экзамен. 1. Нейрогуморальная регуляция обмена веществ. Роль гормонов в регуляции обмена веществ
Скачать 1.07 Mb.
|
КоА-карбоксилазы, притока глицерола)ЙодтирониныСтроениеК гормонам самой щитовидной железы относятся тироксин и трийодтиронин, которые представляют собой йодированные производные аминокислоты тирозина. Строение гормонов щитовидной железыСинтезОсуществляется в фолликулярных клетках щитовидной железы. Йодиды поступают из крови в клетку симпортом с ионами Na+ и из клетки в фолликулярное пространство диффузией. На апикальной мембране клеток селен-зависимая гемсодержащая тиреопероксидаза. йодирует остатки тирозина в тиреоглобулине с образованием моно- и дийодпроизводных (МИТ, ДИТ) тирозина, конденсирует часть МИТ и ДИТ до йодтиронинов, при этом доля трийодтиронина (Т3) и тетрайодтиронина (тироксин, Т4) составляет около 30% от всех йодпроизводных. Схема реакций синтеза тиреоидных гормоновЙодированный тиреоглобулин хранится во внеклеточных коллоидах, при тиреотропной стимуляции пиноцитируется фолликулярными клетками, сливается с лизосомами и гидролизуется. Далее три- и тетрайодтиронин секретируются в кровь. В крови гормоны транспортируются специфическим глобулином, а также альбумином. На апикальной мембране тиреоцита взаимодействуют ферменты НАДФН-оксидаза, супероксиддисмутаза и тиреопероксидаза. Образованный НАДФН-оксидазой супероксид-анион-радикал дисмутирует до перекиси водорода. Полученная H2O2 под действием тиреопероксидазы реагирует с иодид-ионами, образуя активную форму йода, которая присоединяется к тирозильным остаткам тиреоглобулина (реакция тиреопероксидазы). Регуляция синтеза и секрецииАктивируют: тиреотропин на этапах поглощения йода, синтеза тиреоглобулина, эндоцитоза и секреции Т3 и Т4 в кровь. Уменьшают: тироксин и трийодтиронин (по механизму обратной отрицательной связи). Синтез гормонов подавляют стрессы, инфекции, травмы, высокие концентрации йода (бесконтрольный прием препаратов KJ), соединения фтора, токсины (пестициды, кадмий, свинец, ртуть). Механизм действияЦитозольный. Мишени и эффектыРецепторы к йодтиронинам имеют все ткани организма. В клетках-мишенях, особенно в печени, тироксин дейодируется и активной формой является трийодтиронин (3,5,3'-производное). Деактивация тироксина в неактивный 3,3',5'-трийодтиронин (reverse T3, rT3) происходит при участии деиодиназы (тип 3). Его увеличивают стресс, травмы, низкокалорийная диета. воспалительные процессы (цитокины), инфекции, дисфункция печени и почек, токсины и некоторые лекарства. Превращение тироксина в активный 3,5,3'-трийодтиронин (деиодиназа 2) нуждается в ионах цинка и селена. Эта реакция ослаблена у плода, новорожденных и престарелых. Тиреоидные гормоны увеличивают скорость базального метаболизма. Главным эффектом является повышение активности Na+,K+-АТФазы, что приводит к быстрому расходованию АТФ и по механизму дыхательного контроля запускает катаболизм углеводов и липидов. В митохондриях увеличивается количество АТФ/АДФ-транслоказыи потребление кислорода. Сопутствующим эффектом усиления катаболизма является термогенез (наработка тепла). Белковый обмен: Усиливает транспорт аминокислот в клетки. Активирует синтез дифференцировочных белков в ЦНС, гонадах, костной ткани и обусловливает развитие этих тканей. У детей действие тиреоидных гормонов в целом анаболическое, т.к. трийодтиронин усиливает выделение соматолиберина, что стимулирует секрецию гормона роста. Одновременно он синергичен другим метаболическим эффектам СТГ, что и является причиной низкорослости при гипотиреозе. У взрослых действие тиреоидных гормонов, в основном, катаболическое. Углеводный обмен: Увеличивает гликогенолиз и аэробное окисление глюкозы. Липидный обмен: Стимулирует липолиз, β-окисление жирных кислот, подавляет стероидогенез. Нуклеиновый обмен: Активирует начальные стадии синтеза пуринов и синтеза пиримидинов, стимулирует дифференцировочный синтез РНК и ДНК. Также трийодтиронин в надпочечниках подавляет синтез катехоламинов, хотя в целом чувствительность тканей к адреналину повышается. Инактивация тиреоидных гормоновДеактивация тиреоидных гормонов происходит в тканях-мишенях при действии дейодиназ, последовательно удаляющих от молекулы йод. Далее реакции катаболизма включают дезаминирование или декарбоксилирование боковой цепи или расщепление эфирной связи с образованием неактивных соединений. В печени дейодированные метаболиты связываются с глюкуроновой или серной кислотой и удаляются с желчью. ПатологияГипофункцияПричина. Развивается при снижении синтеза тиреоидных гормонов в результате недостаточной стимуляции со стороны гипофиза и/или гипоталамуса, при заболевании самой железы, при нехватке необходимых веществ (аминокислоты, железо, йод, селен). Очень часто причиной выраженного гипотиреоза является болезнь Хашимото, при которой вырабатываются блокирующие антиантитела к рецепторам . Клиническая картина Симптомами субклиническогогипотиреоза, зачастую неспецифическими, могут быть отечность лица, сухость кожи и волос, ломкость ногтей, увеличение массы тела, бледность, скованность мышц, галакторея у женщин в конце цикла, брадикардия, понижение систолического давления, психическая инертность, депрессия, апатия, вялость, сонливость, утомляемость, запоры, снижение утренней температуры тела до 36,0°-35,5°С и ниже. У подростков отмечается отставание в физическом развитии, позднее половое созревание, функциональная дебильность, т.е. замедление мышления, снижение успеваемости в школе, неспособность к творческой деятельности, утрата чувства юмора. При наличии выраженного гипотиреоза: у плодов, новорожденных и детей младшего возраста развивается кретинизм. у взрослых отмечается микседема, у женщин – бесплодие и галакторея (см регуляция синтеза и секреции пролактина), у обоих полов – деменция, психоз. При лечении используют заместительную терапию левотироксином (L-тироксин). ГиперфункцияПричина. Большинство случаев выраженного гипертиреоза вызвано наличием активирующих антиантител к рецепторам . В этом случае заболевание носит название болезнь фон Базедова (в отечественной и европейской литературе) или болезнь Грейвса (в американской литературе). Клиническая картина. Симптомами субклинического гипертиреоза являются трудность засыпания, эмоциональная лабильность и нервозность (плаксивость), выпадение волос, сухие ногти, неизменность веса на фоне повышения аппетита, тахикардия, мышечная слабость, потливость, влажные ладони. При более выраженной форме отмечается субфебрильная температура (до 37,5°С), особенно к вечеру, нервное возбуждение, экзофтальм, тремор, диарея, похудание, у женщин бесплодие и скудость месячных. При лечении используют тиреостатические препараты, которые ингибируют тиреопероксидазу (мерказолил, пропилтиоурацил), радиойодтерапию и хирургическое иссечение участка железы. 2. Глюкагон, биосинтез, химическая природа и механизм действия на углеводный и липидный обмен. Глюкагон представляет собой одноцепочечный полипептид, состоящий из 29 аминокислотных остатков. В молекуле глюкагона нет дисульфидных связей, поскольку в ней нет остатков цистеина. По некоторым иммунологическим и физиологическим свойствам глюкагон аналогичен энтероглюкагону — пептиду, экстрагированному из слизистой оболочки двенадцатиперстной кишки. Кроме того, 14 из 27 аминокислотных остатков глюкагона идентичны таковым в молекуле секретина Биосинтез и метаболизмОсновным местом синтеза глюкагона служат А-клетки островкового аппарата поджелудочной железы. Однако довольно большие количества этого гормона могут вырабатываться и в других местах желудочно-кишечного тракта. Глюкагон синтезируется в виде значительно более крупного предшественника — проглюкагона (мол. масса около 9000). Обнаружены и более крупные молекулы, однако не ясно, являются ли они предшественниками глюкагона или близкородственными пептидами. Лишь 30— 40% иммунореактивного «глюкагона» в плазме приходится на долю панкреатического глюкагона. Остальная часть—это более крупные молекулы, лишенные биологической активности. В плазме глюкагон находится в свободной форме. Поскольку он не связывается с транспортным белком, период его полужизни мал (около 5 мин). Инактивация этого гормона происходит в печени под действием фермента, который, расщепляя связь между Ser-2 и Gln-З, удаляет с N-конца две аминокислоты. Печень — первый барьер на пути секретируемого глюкагона, и, поскольку она быстро инактивирует этот гормон, содержание его в кровиворотной вены гораздо выше, чем в периферической крови. Регуляция секрецииСекреция глюкагона подавляется глюкозой — эффект, подчеркивающий противоположную метаболическую роль глюкагона и инсулина. Подавляет ли глюкоза секрецию глюкагона непосредственно или ее ингибирующий эффект опосредуется действием инсулина или ИФР-1, не ясно, поскольку оба последних гормона подавляет высвобождение глюкагона. На его секрецию влияют и многие другие соединения, включая аминокислоты, жирные кислоты и кетоновые тела, гормоны желудочно-кишечного тракта и нейромедиаторы. Физиологические эффектыЭффекты глюкагона, как правило, противоположны эффектам инсулина. Если инсулин способствует запасанию энергии, стимулируя гликогенез, липогенез и синтез белка, то глюкагон, стимулируя гликогенолиз и липолиз, вызывает быструю мобилизацию источников потенциальной энергии с образованием глюкозы и жирных кислотсоответственно. Глюкагон — наиболее активный стимулятор глюконеогенеза; кроме того, он обладает и кетогенным действием. Печень — основная мишень глюкагона. Связываясь со своими рецепторами на плазматической мембране гепатоцитов, глюкагон активирует аденилатциклазу. Генерируемый при этом сАМР в свою очередь активирует фосфорилазу, которая ускоряет распад гликогена, а одновременное ингибирование гликогенсинтазы тормозит образование последнего (см. гл. 44). Для этого эффекта характерна и гормональная, и тканевая специфичность: глюкагон не влияет на гликогенолиз в мышце, а адреналин активен и в мышцах, и в печени. Глюкагон — мощный липолитический агент. Повышая содержание сАМР в адипоцитах, он активирует гормон - чувствительную липазу. Образующиеся при этом в большом количестве жирные кислоты могут использоваться в качестве источников энергии или превращаться в кетоновые тела (ацетоацетат и p-гидроксимасляная кислота). Это важный аспект метаболизма при диабете, поскольку при инсулиновой недостаточности содержание глюкагона всегда повышено. 3. Инсулин, биосинтез, химическая природа и механизм действия на углеводный и липидный обмен. СтроениеИнсулин представляет собой белок, состоящий из двух пептидных цепей А (21 аминокислота) и В (30 аминокислот), связанных между собой дисульфидными мостиками. Всего в зрелом инсулине человека присутствует 51 аминокислота и его молекулярная масса равна 5,7 кДа. СинтезИнсулин синтезируется в β-клетках поджелудочной железы в виде препроинсулина, на N-конце которого находится концевая сигнальная последовательность из 23 аминокислот, служащая проводником всей молекулы в полость эндоплазматической сети. Здесь концевая последовательность сразу отщепляется и проинсулин транспортируется в аппарат Гольджи. На данном этапе в молекуле проинсулина присутствуют А-цепь, В-цепь и С-пептид (англ. connecting – связующий). В аппарате Гольджи проинсулин упаковывается в секреторные гранулы вместе с ферментами, необходимыми для "созревания" гормона . По мере перемещения гранул к плазматической мембране образуются дисульфидные мостики, вырезается связующий С-пептид (31 аминокислота) и формируется готовая молекула инсулина. В готовых гранулах инсулин находится в кристаллическом состоянии в виде гексамера, образуемого с участием двух ионов Zn2+. Схема синтеза инсулинаРегуляция синтеза и секрецииСекреция инсулина происходит постоянно, и около 50% инсулина, высвобождаемого из β-клеток, никак не связано с приемом пищи или иными влияниями. В течение суток поджелудочная железа выделяет примерно 1/5 от запасов имеющегося в ней инсулина. Главным стимулятором секреции инсулина является повышение концентрации глюкозы в крови выше 5,5 ммоль/л, максимума секреция достигает при 17-28 ммоль/л. Особенностью этой стимуляции является двухфазное усиление секреции инсулина: первая фаза длится 5-10 минут и концентрация гормона может 10-кратно возрастать, после чего его количество понижается, вторая фаза начинается примерно через 15 минут от начала гипергликемии и продолжается на протяжении всего ее периода, приводя к увеличению уровня гормона в 15-25 раз. Чем дольше в крови сохраняется высокая концентрация глюкозы, тем большее число β-клеток подключается к секреции инсулина. Индукция синтеза инсулина происходит от момента проникновения глюкозы в клетку до трансляции инсулиновой мРНК. Она регулируется повышением транскрипции гена инсулина, повышением стабильности инсулиновой мРНК и увеличением трансляции инсулиновой мРНК. Активация секреции инсулина 1. После проникновения глюкозы в β-клетки (через ГлюТ-1 и ГлюТ-2) она фосфорилируется гексокиназой IV (глюкокиназа, обладает низким сродством к глюкозе), 2. Далее глюкоза аэробно окисляется, при этом скорость окисления глюкозы линейно зависит от ее количества, 3. В результате нарабатывается АТФ, количество которого также прямо зависит от концентрации глюкозы в крови, 4. Накопление АТФ стимулирует закрытие ионных K+-каналов, что приводит к деполяризации мембраны, 5. Деполяризация мембраны приводит к открытию потенциал-зависимых Ca2+-каналов и притоку ионов Ca2+ в клетку, 6. Поступающие ионы Ca2+ активируют фосфолипазу C и запускают кальций-фосфолипидный механизм проведения сигнала с образованием ДАГ и инозитол-трифосфата (ИФ3), 7. Появление ИФ3 в цитозоле открывает Ca2+-каналы в эндоплазматической сети, что ускоряет накопление ионов Ca2+ в цитозоле, 8. Резкое увеличение концентрации в клетке ионов Ca2+ приводит к перемещению секреторных гранул к плазматической мембране, их слиянию с ней и экзоцитозу кристаллов зрелого инсулина наружу, 9. Далее происходит распад кристаллов, отделение ионов Zn2+ и выход молекул активного инсулина в кровоток. Схема внутриклеточной регуляции синтеза инсулина при участии глюкозыОписанный ведущий механизм может корректироваться в ту или иную сторону под действием ряда других факторов, таких как аминокислоты, жирные кислоты, гормоныЖКТ и другие гормоны, нервная регуляция. Из аминокислот на секрецию гормона наиболее значительно влияют лизин и аргинин. Но сами по себе они почти не стимулируют секрецию, их эффект зависит от наличия гипергликемии, т.е. аминокислоты только потенциируют действие глюкозы. Свободные жирные кислоты также являются факторами, стимулирующими секрецию инсулина, но тоже только в присутствии глюкозы. При гипогликемии они оказывают обратный эффект, подавляя экспрессию гена инсулина. Логичной является положительная чувствительность секреции инсулина к действию гормонов желудочно-кишечного тракта – инкретинов (энтероглюкагона и глюкозозависимого инсулинотропного полипептида), холецистокинина, секретина, гастрина, желудочного ингибирующего полипептида. Клинически важным и в какой-то мере опасным является усиление секреции инсулина при длительном воздействии соматотропного гормона, АКТГ и глюкокортикоидов, эстрогенов, прогестинов. При этом возрастает риск истощения β-клеток, уменьшение синтеза инсулина и возникновение инсулинзависимого сахарного диабета. Такое может наблюдаться при использовании указанных гормонов в терапии или при патологиях, связанных с их гиперфункцией. Нервная регуляция β-клеток поджелудочной железы включает адренергическую и холинергическую регуляцию. Любые стрессы (эмоциональные и/или физические нагрузки, гипоксия, переохлаждение, травмы, ожоги) повышают активность симпатической нервной системы и подавляют секрецию инсулина за счет активации α2-адренорецепторов. С другой стороны, стимуляция β2-адренорецепторов приводит к усилению секреции. Также выделение инсулина повышается n.vagus, в свою очередь находящегося под контролем гипоталамуса, чувствительного к концентрации глюкозы крови. МишениРецепторы инсулина находятся практически на всех клетках организма, кроме нервных, но в разном количестве. Нервные клетки не имеют рецепторов к инсулину, т.к. последний просто не проникает через гематоэнцефалический барьер. Наибольшая концентрация рецепторов наблюдается на мембране гепатоцитов (100-200 тыс на клетку) и адипоцитов (около 50 тыс на клетку), клетка скелетной мышцы имеет около 10 тысяч рецепторов, а эритроциты - только 40 рецепторов на клетку. Механизм действия: Г + 1-TMS рецептор ® изменение конформации α-субъединиц ® активация тирозинкиназной активности β-субъединицы ® активация инсулинорецепторного субстрата (IRS) ® запуск: а) фосфатидилинозитолкиназный путь ® ДАГ + ИФ3 ® активация 50 ферметов обмена углеводов, липидов, белков, активация движения GLUT4. б) МАП-киназный путь (митогенактивируемая протеинкиназа) ® Å факторов транскрипции ® синтез белков, стимуляция деления кл. в) активация RAS-белка, связанного с рецептором фактора роста. Влияние на обмен веществ: А. Влияние инсулина на метаболизм углеводов: 1) на транспорт глюкозы через мембрану: облегчает диффузию гл в клетки, кроме печеночных, за счет увеличения числа переносчиков GLUT4. В печеночных кл: индукция глюкокиназы® гл в гл-6-ф ® концентрация свободной гл поддерживается на низком уровне ® гл проникает в кл путем простой диффузии по градиенту концентрации. 2) на утилизацию гл: усиливает гликогенез (1) Å фосфодиэстеразу ® ¯ цАМФ ® гликогенсинтаза активная, 2) Å фосфатазу ® дефосфорилирование гликогенсинтазы ® гликогенсинтаза активная, 3) ¯цАМФ ® ингибирование фосфорилазы ® гликогенсинтаза активная) 3) на образование гл: ингибирует глюконеогенез (ингибирует синтез ФЕПКК). 4) на метаболизм гл: ¯ содержание гл в крови. В. Влияние инсулина на метаболизм липидов: 1) стимулирует липогенез в жировой ткани (за счет притока ацетил |