Лекции по ФГП(Физика горных пород). 1. Основные понятия предмета физики горных пород
Скачать 0.93 Mb.
|
21. ТЕПЛОПРОВОДНОСТЬ ПОРОД Теплопроводность пород определяет способность минералов, слагающих породу, проводить тепло. Горные породы, как правило, являются плохими проводниками тепла (см. приложение 13) и имеют небольшие значения теплопроводности (0,1 - 7 ккал/м·ч·0С). Рудные минералы - магнетит, пирит гематит и другие - обладают большими значениями (10 - 40 ккал/м·ч·0С) теплопроводности, поскольку они имеют электронную теплопроводность. Из породообразующих минералов большими значениями теплопроводности (6 - 10 ккал/м·ч·0С) обладаем кварц и еще большими - алмаз. У плотных малопористых безрудных пород (группа пород по строению 1п.) наблюдается увеличение коэффициента теплопроводности λ с увеличением содержания в них кварца. Сравнительно повышенную теплопроводность имеют гидрохимические осадки (каменная соль, сильвин, ангидрит), а пониженную - каменный уголь и асбест. У чистых монокристаллов теплопроводность наибольшая, а при переходе их в поликристаллы она падает (табл. 10). Наибольшие пределы изменения теплопроводности характерны для монокристаллов. Для практических расчетов, теплопроводности пород, представляющих собой статистическую смесь минералов, пригодна формула логарифмического средневзвешенного Где λi –теплопроводность минерала с относительным объемным содержанием в породе Vi . Значения теплопроводности различных минералов, составляющих породу, имеют небольшие различия, поэтому для упрощения расчетов можно принять среднее значение теплопроводности , где - теплопроводность слоистой породы вдоль напластования; - теплопроводность слоистой породы поперек напластавания. Теплопроводности кристаллических и аморфных минералов имеют значительные отличия. Как правило, λкр > λам. Теплопроводность аморфных минералов не превышает 1,5 ккал/м·ч·0С, поэтому наличие стекловатой массы понижает теплопроводность пород. Теплопроводность пород зависит от размеров зерен, из которых сложены породы. Как правило, происходит уменьшение теплопроводности пород с уменьшением размеров зерен. Влияние размеров зерен наиболее существенно только при небольших их средних размерах dср. Это объясняется тем, что длина свободного пробега фононов определяется двумя факторами: рассеиванием фононов на фононах и рассеиванием фононов на границах кристаллов и зерен. Какой фактор будет преобладать, зависит от соотношения длины свободного пробега фононов и размеров зерен dср. Если l<<dср, длина свободного пробега не зависит от размеров зерен, а зависит от температуры. Длина свободного пробега фононов при l ≈ dср зависит от размеров зерен. В частности, для мрамора и керамики экспериментально установлена следующая формула: где λ0 - коэффициент теплопроводности монокристалла; B— отношение температурного градиента на одном контакте зерен к среднему температурному градиенту всего образца (для мрамора при температуре 0 0C B=0,0027). Теплопроводность слоистых пород, как это было показано выше, зависит от направления теплового потока: вдоль слоистости она всегда больше, так как в этом случае λ║ определяется теплопроводностью наиболее проводящего слоя, а в другом случае — теплопроводностью наименее проводящего слоя. Отношение λ║/ λ┴ в среднем для слоистых пород составляет приблизительно 1,1 -1,5 (табл. 11). У слюды вдоль спайности теплопроводность в 6 раз выше, чем поперек спайности; для графита это отношение составляет 2 и более. При этом анизотропия объясняете тем, что частицы, входящие в кристаллическую решетку минерала, вдоль слоистости взаимодействуют интенсивнее; молекулярное движение перпендикулярно плоскости спайности передается значительно хуже. Теплопроводность пористых пород является сложной функцией составляющих их фаз (табл. 12). При этом передача тепловой энергии может происходить как посредством теплопроводности, так и путем конвекции заполнителя порового пространства. Если размеры пор сравнительно малы, явление конвекции можно не учитывать, так же как и явление передачи тепла излучением, когда температура нагрева породы не превышает 1000° С. Теплопроводность газов очень низка, поэтому λсухих пористых пород всегда ниже теплопроводности непористых пород. Например, теплопроводность песка в 6 - 7 раз меньше теплопроводности плотного песчаника. Большую роль играет форма пор в породе; теплопроводность пород, имеющих удлиненные поры (типа трещин), значительно меньше в направлении, перпендикулярном направлению теплового потока. В этом случае можно использовать формулу последовательного соединения звеньев. Так как коэффициент теплопроводности воздуха λв ≈ 0,02 ккал/м·ч·0С Если тепловой поток направлен вдоль трещин, то Поскольку . Эти уравнения определяют предельные зависимости теплопроводности пород от пористости и трещиноватости (рис. 41). В зависимости от формы пор тип конкретного уравнения может быть различным. Для практических целей при Р около 20% можно пользоваться уравнением типа Увлажнение пористых пород приводит к увеличению их теплопроводности (рис. 42); поскольку теплопроводность воды ниже, чем минералов, то λ пористой влажной породы никогда не становится близким или равным λ0 такой же, но малопористой породы. Исследования показывают, что теплопроводность заполняющего поры вещества (вода и воздух) может быть выражена следующей приближенной формулой (см. рис. 42): , где w -объемная влажность породы; 0,5 — коэффициент теплопроводности воды; 0,023 - коэффициент теплопроводности воздуха. Теплопроводность насыщенной водой глины в 6 - 8 раз больше, чем теплопроводность сухой. С повышением температуры (рис. 43, а) теплопроводность почти всех кристаллических минералов и пород снижается, а теплопроводность аморфных и скрытокристаллических минералов и пород (обсидиан, аморфные разновидности SiO2) повышается. Некоторый рост теплопроводности наблюдается также у анортозитов, глин и углей. Наиболее значительное снижение λ, с повышением температуры характерно для пород, обладающих исходными его значениями. Эта закономерность хорошо согласуется с известной зависимостью (рис. 43, 6) , где Т — абсолютная температура; A - коэффициент (для кварцитов, гранитов и пегматитов A = 900 - 1600). Такая закономерность четко соблюдается только в области температур до 4000 С. При более высоких температурах λ → const, у некоторых пород наблюдается даже возрастание λ, с повышением температуры, так как при высоких температурах возникает дополнительная теплопроводность, обусловленная излучением. Теплопроводность пород, обладающих повышенной пористостью (известняков и др.) с увеличением температуры изменяется мало, что также связано в основном с радиационной составляющей теплопроводности. В практических расчетах можно принять, что теплопроводность этих пород не зависит от температуры. Уменьшение теплопроводности пород с повышением температуры объясняется усилением хаотичности движения молекул в кристаллической: решетке и их взаимодействием (рассеиванием одного фонона другим), что в свою очередь, снижает длину свободного пробега фононов. Кривая теплопроводности влажной породы при нагреве до 1200С (вследствие испарения влаги) имеет точку максимума: вначале (так как теплопроводность воды с повышением температуры увеличивается) λ, всей породы возрастает, а затем при усилении процесса испарения влаги происходит уменьшение теплопроводности. С понижением температуры теплопроводность скальных пород увеличивается; в области абсолютных температур 5 - 30К наблюдается максимум λ. Понижение температуры влажных пород ниже нуля приводит к замерзанию воды и, следовательно, к резкому возрастанию теплопроводности пород (так как λльда>> λв). Теплопроводность пористых пород под воздействием давления обычно увеличивается, непористых пород — увеличивается незначительно. 22. ОСНОВНЫЕ ПОНЯТИЯ ЭЛЕКТРОДИНАМИКИ Электродинамика горных пород изучает взаимодействие электрических и магнитных полей с горной породой. Электрическое поле проявляется в силовом воздействии на заряженные тела и частицы. Величина и направление действия электрических сил в любой точке пространства определяются напряженностью электрического поля . Электрическое поле характеризуется также работой, которую оно может совершить. В качестве показателя этой работы принято пользоваться потенциалом φ. Разность потенциалов между двумя точками поля называется напряжением U. Напряженность поля зависит от свойств среды, влияние которой учитывается, например, в законе Кулона о силе взаимодействия двух зарядов Q1 и Q2: где εа — коэффициент, учитывающий свойства среды и называемый абсолютной диэлектрической проницаемостью; r— расстояние между зарядами. Величину εа можно представить в виде двух сомножителей εа = εε0, где ε — относительная диэлектрическая проницаемость исследуемого вещества; ε0 — коэффициент пропорциональности между силой взаимодействия и величиной зарядов, расположенных в вакууме. Этот коэффициент называется электрической постоянной вакуума и равен 8,85∙10-12 ф/м. Так как из соотношения напряженности поля в вакууме Е1и в породе Е2 получим: Относительная диэлектрическая проницаемость показывает, во сколько раз напряженность поля в породе меньше, чем в вакууме. Для характеристики электрического поля независимо от свойств вещества используют электрическую индукцию , величина которой для поля точечного заряда определяется только величиной заряда Q: , Как известно, проводники характеризуются тем, что всякое электрическое поле вызывает в них движение зарядов, а диэлектрики — полным отсутствием свободного движения зарядов. Понятие диэлектрической проницаемости имеет смысл только для второй группы пород. Действительно, если среда, в которой располагаются заряды, способна проводить ток, то вместо взаимодействия зарядов будет происходить их перенос из точки с наибольшим потенциалом в точку с наименьшим потенциалом до момента их выравнивания. Следовательно, внутри проводника φ = const, = 0, а диэлектрическая проницаемость близка к бесконечности. Перенос зарядов из одной точки проводника в другую, осуществляемый электронами и ионами, называется током проводимости. Ток — величина скалярная. Векторный показатель, характеризующий количество элементарных зарядов, проходящих через единицу сечения проводника в единицу времени, называют плотностью электрического тока : , где п — число заряженных частиц в 1 см3; q— заряд частицы; υ— скорость направленного движения зарядов. Так как υ= иЕ, где и — подвижность частиц, то . Это уравнение представляет собой закон Ома в дифференциальной форме, причем коэффициент ζ = пqи зависит от вида и состояния проводящей породы и называется ее удельной электропроводностью. Удельная электропроводность измеряется в сименсах (1/ом∙м). Горные породы в большинстве случаев входят в группу полупроводников, характеризующуюся свойствами как диэлектриков (ε < ∞), так и проводников (породам присущи некоторые значения удельной электропроводности ζ > 0). 23. ПОЛЯРИЗАЦИЯ ПОРОД При наложении на породу электрического поля в ней происходит смещение внутренних связанных зарядов — сдвижение центров положительных и отрицательных зарядов в кристаллах таким образом, что на поверхности породы появляются неуравновешенные связанные заряды. Эти заряды создают электрическое поле, направленное противоположно внешнему полю и ослабляющее его. Это явление называется поляризацией породы. Вектор поляризации — суммарный электрический момент единицы объема диэлектрика. Формально поляризацию можно представить как разность между истинной электрической индукцией поля и электрической индукцией, этого же поля в вакууме при = соnst: Таким образом, ε — это мера поляризации породы; действительно, если Р = 0, то ε = 1: . Поляризация происходит только за счет смещения (или поворота) связанных зарядов. В роли связанных зарядов могут выступать как атомы и ионы кристаллической решетки с гомео- и гетерополярной связью, так и целые объемы породы, оказавшиеся в особых структурных условиях. В зависимости от механизма поляризации и частиц, участвующих в поляризации, выделяют четыре вида поляризации. 1. Электронная поляризация РЭвозникает при воздействии внешнего поля в атомах в результате смещения электронных орбит относительно положительно заряженных ядер (рис. 54, I). Возникший электрический диполь может быть охарактеризован дипольным моментом — вектором, направленным от отрицательного заряда диполя к положительному и численно равным произведению заряда полюса диполя Qна расстояние между полюсами : . Электронной поляризацией обладают все атомы и молекулы; она является наиболее быстрым видом поляризации (возникает, за время 10-15 сек). 2. Ионная поляризация Риобразуется за счет смещения в электрическом поле ионов или частей кристаллических решеток с гомеополярной (ковалентной) связью. При этом под действием напряжения сдвигаются уже не электроны, а положительные и отрицательные ионы. Величина ионной поляризации также прямо пропорциональна величине внешнего поля, скорость ее установления несколько меньше, чем электронной, и составляет 10-14 - 10-12 сек. 3. Дипольная ориентационная поляризация РД(рис. 54, II) наблюдается при наличии в породах полярных связей ионов; в этом случае каждая молекула с момента своего возникновения уже имеет некоторый дипольный момент, не зависящий от напряженности внешнего поля. Однако в некотором объеме породы из-за хаотического расположения молекул суммарный дипольный момент при отсутствии внешнего поля равен нулю. Если такую породу внести во внешнее электрическое поле, то диполи будут ориентироваться по силовым линиям внешнего поля и при этом будет поляризоваться весь объем породы. У жидкостей, где связи между отдельными молекулами слабы, ориентация диполей будет почти полной и слабо зависящей от напряженности электрического поля. В твердых горных породах взаимные связи между молекулами не позволяют ориентироваться им точно по силовым линиям поля — диполи только поворачиваются на некоторый угол, зависящий от сил связей в данной породе и напряженности внешнего поля. Очевидно, что при увеличении угол поворота диполей до некоторой степени возрастает (квазиупругая поляризация). При повышении температуры увеличивается колебание молекул и уменьшается число ориентированных диполей. Дипольная ориентационная поляризация завершается в течение 10-10 —10-7 сек. 4. Макроструктурная (объемная) поляризация Рм возникает в многофазной системе, состоящей из кристаллов, обладающих различными электрическими свойствами, и пустот, заполненных жидкостью и воздухом (рис. 54, III). При внесении породы в электрическое ноле свободные электроны и ионы, содержащиеся в проводящих и полупроводящих включениях, начинают перемещаться в пределах каждого включения. В результате этого каждое включение приобретает дипольный момент и ведет себя подобно большой молекуле. Это явление обусловлено электронным или ионным током проводимости в пределах каждого включения, но так как передвижение зарядов ограничено размерами включения, то конечный результат подобен явлению поляризации. Время завершения макроструктурной поляризации составляет 10-8 — 10-3 сек. Поскольку время установления дипольной и макроструктурной поляризации пород сравнимо с частотой применяемых на практике электромагнитных полей, то эти два вида поляризации называются релаксационными или медленными, в отличие от мгновенного смещения электронов и ионов. 5. В горных породах имеет место также медленная электрохимическая поляризация, причиной которой являются следующие процессы, возникающие при прохождении тока через многофазные среды: - окислительно-восстановительные процессы (характерны для сульфидов, окислов и высококарбонизированных каменных углей); - процессы, характеризующиеся появлением в местах выхода и входа тока продуктов электролиза, газов; - электроосмос, т. е. перемещение молекул жидкости, имеющих заряд одного знака, к электроду противоположной полярности; - электрофорез — смещение твердых частиц, имеющих обратный знак заряда, к другому электроду; - перераспределение концентрации растворов — например, в результате прохождения тока через кварцевый песок, насыщенный раствором NaС1, на положительном электроде появляется повышенная концентрация раствора. Такие процессы бывают как обратимые, так и необратимые. Электрохимическая поляризация происходит значительно медленнее, чем другие виды поляризации. У углей она достигает наибольшего значения в течение нескольких десятков минут. При отключении напряжения в образце возникает ток деполяризации, направленный против приложенной разности потенциалов. Наиболее активными в этом отношении минералами являются пирит, пирротин, халькопирит и графит. Активны также магнетит, гематит и другие окислы, имеющие металлическую проводимость. Под воздействием электрического поля в породах возникает явление электрострикции. Оно заключается в деформировании (подобно всестороннему сжатию) диэлектриков электрическим полем и присуще всем породам. Причинами электрострикции являются, с одной стороны, давление на породу заряженных частиц, создающих поле и притягивающихся друг к другу, с другой стороны — смещение ионов и электронов в породе, вызываемое полем. Механические напряжения σ, возникающие в результате электрострикции, прямо пропорциональны квадрату напряженности электрического поля. |