Главная страница
Навигация по странице:

  • По объектам исследований

  • Из вышеизложенного вытекают следующие научные и практические задачи

  • ФГП подразделяется на следующие разделы

  • 2. Минералы Под минералом

  • 3. Горные породы Горная порода

  • Структура Кристаллическая

  • Скрытокристаллическая Кристаллы не видны даже при увеличении Стекловатая

  • Порфировая В общую стекловатую или кристаллическую массу вкраплены крупные зерна Обломочная

  • Текстура Массивная

  • Пористая Частицы породы не плотно прилегают друг к другу, образуя большое число микропустот Слоистая

  • Лекции по ФГП(Физика горных пород). 1. Основные понятия предмета физики горных пород


    Скачать 0.93 Mb.
    Название1. Основные понятия предмета физики горных пород
    АнкорЛекции по ФГП(Физика горных пород).docx
    Дата24.04.2017
    Размер0.93 Mb.
    Формат файлаdocx
    Имя файлаЛекции по ФГП(Физика горных пород).docx
    ТипДокументы
    #4538
    страница1 из 8
      1   2   3   4   5   6   7   8

    1. Основные понятия предмета физики горных пород
    ФГП – оформившаяся в самостоятельный раздел горной науки в 60-х годах прошлого века, положила начало новому подходу к породе как объекту геологических, физических исследований и горных разработок одновременно.

    ФГП изучает физические свойства породы и процессы с целью использования их для решения задач горного производства.

    Место ФГП среди других наук определяется ее методами, объектами и направленностью исследований.

    По объектам исследований ФГП близка к геологическим наукам – кристаллографии, минералогии, петрографии. Без знания минерального состава и структурно-текстурных особенностей пород и условий их залегания невозможно изучение физических свойств пород, обоснованное объяснение физических явлений, происходящих в них. Поэтому данные о составе, строении, генезисе пород, их залегании ФГП заимствует у геологических наук и использует для своих исследований.

    По методам исследований ФГП близка к физике твердого тела, явления и свойства объясняются и изучаются с позиций современной физики твердого тела, используется ее математический аппарат и экспериментальные методы.

    В тоже время, изучаемые ФГП объекты значительно разнообразнее, более сложны и зависят от большего количества случайных факторов, чем в физике твердого тела. Законы влияния и возникновения всех этих факторов практически невозможно одновременно учесть. В связи с этим в ФГП широко применяется аппарат теории вероятности и мат. статистики, что предопределяет использование экспериментально установленных закономерностей и корреляционных зависимостей, использование для описания физических явлений в породах макроскопического (феноменологического) метода.

    В целях совершенствования горного производства ФГП изыскивает резервы повышения производительности труда через познание свойств горных пород. Горное производство как в условиях открытых, так и подземных горных работ состоит в общем виде из следующей технологической цепочки: бурение, взрывание, выемка взорванной массы, транспортирование пород, их складирование, первичная обработка, измельчение полезного ископаемого и его обогащение. Эти стадии процесса добычи полезного ископаемого связаны с воздействием на породу различных машин и механизмов. При этом наибольшая эффективность работы горного предприятия достигается при оптимальном соответствии параметров машин и механизмов физическим характеристикам породы.

    Параметры машин и механизмов должны быть приспособлены к изменяющимся свойствам горных пород. Их высокая эффективность будет зависеть от наличия датчиков и устройств, дающих информацию о свойствах, составе и состоянии массива пород. Следовательно, разработка методов контроля процессов также входит в задачи ФГП.

    Физические параметры пород не являются строго неизменными и в некоторых пределах ими можно управлять. Например, свойства пород могут меняться при нагреве, охлаждении, насыщении их жидкостями, воздействии эл. тока и т.д. Поэтому возникает задача исследования результатов таких воздействий на породу.

    Изучение физических явлений в породах дает возможность совершенствовать как машины и механизмы, так и методы горной технологии, создавать принципиально новые способы добычи полезных ископаемых и извлечение полезных ископаемых из руд.

    Из вышеизложенного вытекают следующие научные и практические задачи, которые решает ФГП:

    А) Установление физических, физико-технических и технологических характеристик горных пород, необходимых для расчета режимов работы и производительности существующего горного оборудования при проектировании горных предприятий и планирования их работы.

    Б) Разработка и создание принципиально новых физических методов воздействия на породы, выявление областей их применения, расчет их эффективности.

    В) Разработка принципиально новой технологии производства горных работ на базе изучения физических свойств пород.

    Г) Изыскание методов и путей создания систем контроля за составом, состоянием и поведением горных пород в процессах горного производства, основанных на изучении свойств пород.

    ФГП подразделяется на следующие разделы:

    1. Механику пород, изучающую механические свойства пород и механические явления, происходящие в породах в процессе разработки месторождений полезных ископаемых.

    2. Акустику пород, изучающую распространение упругих колебаний в породах и все физические процессы, с ними связанные.

    3. Термодинамику пород, в область исследования которой входят тепловые свойства и тепловые процессы в горных породах.

    4. Электродинамику и радиационную физику пород, объединяющую исследования по электрическим, магнитным, радиоволновым и ядерным свойствам и явлениям в горных породах.



    2. Минералы
    Под минералом понимают любое природное химическое соединение, образовавшееся при различных химических и физико-химических процессах в земной коре. К минералам относятся также индивидуализированные элементы, обнаруживаемые в земной коре (самородные металлы и металлоиды).

    Минералы могут быть газообразные (природный газ), жидкие (нефть, ртуть, вода) и твердые (рудные минералы и др.). Количество природных соединений ограниченно; всего на настоящее время, известно около 4100 различных минералов. В большинстве случаев это твердые кристаллические химические соединения. Каждый год открывают в среднем около 50 новых минералов. В настоящее время многие минералы выращиваются искусственно.

    Минералы распределяются в земной коре весьма неравномерно. В образовании горных пород основную роль играют только около 30 так называемых породообразующих минералов, из которых наиболее распространены полевые шпаты — натриевые, калиевые и кальциевые алюмосиликаты, составляющие 60% верхней части земной коры, амфиболы и пироксены — 17%, кварц — 12% и слюды — 3,8%.

    Большинство других минералов присутствует в породах в незначительном количестве. Однако именно они имеют огромное значение для различных производств. В тоже время, такие добавочные (акцессорные) минералы оказывают большое влияние на свойства горных пород.

    Минералы встречаются в виде одиночных хорошо образованных кристаллов и зерен, рассеянных в породе, поликристаллических плотных и землистых масс, натеков, налетов, корочек и желваков. Некоторые кристаллы, такие, как кварц, полевой шпат и сподумен, могут быть очень больших размеров, однако большинство минералов встречается в виде мелких кристаллов.

    Минералы имеют свою пространственную решетку, соответствующую закону распределения вещества внутри кристалла. Известно семь типов (сингоний) кристаллических решеток, характеризуемых отношениями размеров кристаллических осей a, b, c(наименьших расстояний между узлами решетки в трех направлениях) и углами между ними α, β, γ (рис. 1):

    первая сингония — триклинная (abc; α β γ 90°);

    вторая сингония — моноклинная (abc; α = γ =90°; β 90°);

    третья сингония — ромбическая (abc; α = γ = β 90°);

    четвертая сингония — тетрагональная (a = bc; α = γ = β =90°);

    пятая сингония — тригональная (a = b = c; α = β = γ 90°);

    шестая сингония — гексагональная (a = bc; α = β = 90° γ =120° );

    седьмая сингония - кубическая (a = b= c; α = β = γ =90°);

    Физические свойства одиночного кристалла определяются его химическим составом и силами связей между частицами, входящими в пространственную решетку.



    Существуют следующие типы связей – ионная (полярная), ковалентная (гомеополярная), металлическая, молекулярная.

    Если взаимодействующие атомы имеют различную электроотрицательность, валентные электроны1 от атома с меньшей электроотрицательностью переходят к атому с большей электроотрицательностью. В результате образуется ионная, или полярная, связь, обусловленная кулоновскими силами взаимодействия. Характерными представителями минералов с ионным типом являются галит КС1 и сильвин КС1.

    В случае если соединяющиеся атомы имеют равные или между собой близкие значения электроотрицательности, то связывающие их электроны располагаются симметрично по отношению к ядрам этих атомов. Возникает ковалентная2, или гомеополярная, связь, которую имеют, например, кварц и алмаз; минералы, обладающие такой связью, характеризуются большой твердостью и высокой температурой плавления.

    В узлах решетки металлов находятся лишь положительные ионы3. Валентные электроны отделены от своих атомов и легко могут переходить от одного иона к другому; такого типа связи называются металлическими, их имеют, например, самородные золото и медь.

    Если решетка кристалла образуется не атомами, а нейтральными молекулами, то связь между ними обуславливается электростатическими силами притяжения, возникающими вследствие поляризации взаимодействующих молекул; такие связи называются молекулярнымии по величине меньше предыдущих.

    Свойства поликристаллических агрегатов наряду со свойствами составляющих кристаллов также зависят от сил сцепления между кристаллами. Эти силы обычно слабее внутрикристаллических и близки по величине к молекулярным.

    Кристаллы анизотропны; их свойства зависят от направления, в котором производится измерение.

    В агрегатах кристаллы обычно не ориентированы, располагаются беспорядочно, поэтому минеральные агрегаты в целом почти изотропны. Они имеют различную макроструктуру, определяющую их свойства. Макроструктура характеризуется размерами, формой кристаллов и их взаимным расположением. Широко распространены зернистые, лучистые, волокнистые, болитовые и другие минеральные агрегаты.

    Характерным признаком некоторых минералов является спайность — способность раскалываться по плоским блестящим поверхностям. Явление спайности — следствие наличия в минералах направлений с ослабленным сцеплением частиц. Весьма развита спайность, например, у слюды. Агрегаты, сложенные такими минералами, анизотропны.

    По химическому составу минералы принято делить на следующие группы:

    самородные элементы (золото, серебро, мышьяк, сера, сурьма, алмаз);

    сульфиды (халькозин Сu2S, сфалерит ZnS, киноварь HgS, пирит FеS2);

    окислы (куприт Сu2О, корунд А12O3, гематит Fе2O3, кварц SiO2);

    силикаты (оливин, тальк, мусковит, биотит, серпентин, каолинит, калиевые полевые шпаты );

    соли кислородных кислот — сульфаты, вольфраматы, карбонаты и т. д. (ангидрид СаSO4, барит ВаSO4, шеелит СаWO4, кальцит СаСО3);

    галоидные соединения (флюорит СаF2, галитNаС1, сильвин КС1).

    Минералы подразделяются по генезису4 на группы. Различают магматогенные минералы, образовавшиеся как непосредственно из магмы, так и из магматогенных горячих растворов, экзогенные (осадочные) минералы, возникшие вблизи поверхности Земли при участии агентов выветривания, и метаморфические минералы, образовавшиеся на глубине в результате изменения других минералов.

    Часто один и тот же минерал может образовываться в различных условиях. Например, слюда может быть магматогенной и метаморфической.


    3. Горные породы

    Горная порода — это природное образование, агрегат минералов более или менее постоянного состава, слагающий самостоятельные геологические тела. Если минерал — химическое соединение элементов, то горная порода — механическое соединение минералов. Горная порода может состоять из кристаллических, аморфных, жидких и газообразных минералов.

    Свойства пород в первую очередь зависят от их минерального состава и макростроения (структурно-текстурных признаков). Содержание в породе различных минералов, выраженное в процентах, называется ее количественным минеральным составом и является одним из основных определяющих ее признаков.

    В зависимости от характера связей отдельных зерен различают следующие типы пород:

    рыхлые (раздельно-зернистые) породы — механические смеси различных минералов или зерен одного минерала, не связанных между собой, например песок, гравий, галечник;

    связные (глинистые) породы — породы с водно-коллоидными связями частиц между собой; например глины, суглинки, бокситы; их отличительной особенностью является высокая пластичность при насыщении водой;

    твердые (скальные и полускальные) породы — породы с жесткой, упругой связью между частицами минералов, например песчаники, граниты, диабазы, гнейсы; связи между минеральными зернами скальных пород наиболее прочны.

    Важнейшими признаками строения пород являются их структура и текстура.


    Структура

    Кристаллическая:

    грубо - и крупнозернистая

    Порода целиком состоит из кристаллических зерен; размер зерен 0,5- 5 мм

    среднезернистая

    Размер зерен до 0,5 мм

    мелкозернистая

    Размер зерен менее 0,25 мм

    афанитовая

    Зерна различимы лишь в лупу

    Скрытокристаллическая

    Кристаллы не видны даже при увеличении

    Стекловатая

    Сплошная стекловатая масса

    Порфировая

    В общую стекловатую или кристаллическую массу вкраплены крупные зерна

    Обломочная

    Породы сцементированы из обломков

    Текстура

    Массивная

    Частицы породы не ориентированы, плотно прилегают друг к другу

    Пористая

    Частицы породы не плотно прилегают друг к другу, образуя большое число микропустот

    Слоистая

    Частицы породы чередуются, образуя слои и напластования


    Если название породы обычно дает общее представление о ее минеральном составе и строении5, то судить о свойствах пород, основываясь, лишь на их названии, можно только весьма приближенно. Только изучение минерального состава и строения конкретных пород дает возможность прогнозировать их физико-технические характеристики.

    Как минеральный состав, так и строение горных пород определяются их генезисом и воздействием различных внешних факторов движением земной коры, деятельностью ветра и воды, давлением, температурными колебаниями) в течение всего периода их существования.

    Магматические породы (гранит, сиенит, дунит, габбро, базальт, диорит) по содержанию кремнезема (SiO2) условно подразделяются на кислые (> 65%), средние (52 - 65%), основные (52 - 40%) и ультраосновные (<40%). Наиболее распространенными кислыми породами являются гранит, липарит, кварцевый порфир; средними — диорит, андезит, сиенит, трахит; основными — габбро, базальт; ультраосновными — перидотит, пироксенит, дунит.

    Осадочные породы — породы, возникшие путем отложения (механического, химического или органического) из воды или воздуха продуктов разрушения магматических и метаморфических пород (известняки, песчаники, трепела, ископаемые угли, осадочные железные руды и др.).

    Метаморфические породы — породы, возникшие в результате преобразования магматических или осадочных пород под воздействием высоких давлений, температур и горячих газоводяных растворов (кварцит, кристаллические сланцы, гнейсы, мрамор).

    Каждой генетической группе свойствен определенный ряд минералов. Для магматических пород характерны лейцит, нефелин, анортоклаз, оливин; для метаморфических — гранаты, тальк, серпентин; для осадочных — кальцит, гипс, доломит, галоидные соединения, каолинит и др.

    Условия образования горных обуславливает их строение. Например, в магматических породах крупность кристаллов, их форма, наличие или отсутствие стекловатой массы обусловлены давлением и скоростью затвердевания магмы.

    В осадочных породах слоистость и пористость, а также способ цементации обломочного материала определяется условиями накопления осадков.

    В метаморфических породах степень метаморфизации пород их перекристаллизацию и, следовательно, строение (сланцеватость, пористость, зернистость) определяют температура и состав горячих растворов, давление, его характер и длительность воздействия.

    В магматических породах практически отсутствует слоистость, в то время как в осадочных толщах слоистость является одним из основных признаков строения.

    Отличительной особенностью горных пород является их многоагрегатность, так как поры и трещины пород в естественных условиях обычно заполнены газами, жидкостью или инородными породами, что предопределяет изменение физических характеристик породы в широких пределах.

    Характерными многоагрегатными представителями являются ископаемые угли (органогенные горные породы), и представляющие собой аморфную массу, являющуюся механической смесью или твердым раствором различных органических компонентов с включением неорганических примесей6.
      1   2   3   4   5   6   7   8


    написать администратору сайта