Главная страница
Навигация по странице:

  • 25. ЕСТЕСТВЕННЫЕ ЭЛЕКТРИЧЕСКИЕ ПОЛЯ В ПОРОДАХ В массивах горных пород существуют естественные электрические поля: теллурические и локальные. Теллурические токи

  • Локальные электрические поля

  • 26. МАГНИТНЫЕ СВОЙСТВА ПОРОД

  • Лекции по ФГП(Физика горных пород). 1. Основные понятия предмета физики горных пород


    Скачать 0.93 Mb.
    Название1. Основные понятия предмета физики горных пород
    АнкорЛекции по ФГП(Физика горных пород).docx
    Дата24.04.2017
    Размер0.93 Mb.
    Формат файлаdocx
    Имя файлаЛекции по ФГП(Физика горных пород).docx
    ТипДокументы
    #4538
    страница8 из 8
    1   2   3   4   5   6   7   8

    24. ЭЛЕКТРОПРОВОДНОСТЬ ГОРНЫХ ПОРОД

    Прохождение тока через породы может осуществляться с переносом (ионная и ионно-электронная проводимость) и без переноса вещества (электронная и дырочная проводимость). Ионную проводимость имеют все аморфные минералы, галоидные соединения, нитраты, сульфаты и т. д. Электронная проводимость характерна для окислов и сульфидов большинства тяжелых металлов.

    По величине электропроводности все вещества делятся на проводники, полупроводники и диэлектрики. Квантовая теория объясняет разную электропроводность веществ различиями в энергетической схеме кристаллов (рис. 67).

    Свободным носителем тока может стать лишь электрон, удаленный от ядра атома на большое расстояние и находящийся в зоне проводимости. Для того чтобы электрон мог попасть в зону проводимости, необходимо некоторое энергетическое воздействие на него.

    Величина этого воздействия зависит от ширины так называемой запрещенной зоны, отделяющей валентную зону обращения электронов от зоны проводимости. В проводниках запрещенная зона отсутствует; электроны легко переходят в зону проводимости и становятся способными переносить заряды.



    В полупроводниках запрещенная зона Q имеет определенную ширину, выражаемую количеством энергии, затрачиваемой электроном для того, чтобы перейти в зону проводимости. Для полупроводников Qдоходит до 1—3 эв. При этом электроны могут перейти в зону проводимости, лишь приобретя энергию, превышающую величину Q.

    В диэлектриках запрещенная зона имеет ширину, характеризующуюся работой, которая чаще всего превышает работу, требуемую на отрыв иона от узла кристаллической решетки (до 8 эв и более). Поэтому проводимость металлов и полупроводников — электронная, а проводимость диэлектриков — ионная.

    Любые примеси в диэлектриках увеличивают их электропроводность, так как искажения кристаллической решетки облегчают отрыв от нее ионов. В полупроводниках, содержащих примеси, электропроводность также увеличивается. В этом случае растет концентрация электронов — носителей тока.

    Повышение температуры уменьшает электропроводность проводников, так как возросшие тепловые колебания ионов решетки тормозят движение электронов. В диэлектриках происходит обратное явление. С повышением температуры подвижность ионов увеличивается, растет их кинетическая энергия и облегчается отрыв ионов от решетки, поэтому электропроводность диэлектрика возрастает.

    В полупроводниках повышение температуры приводит к увеличению концентрации электронов и соответственно к росту электропроводности пород.

    Причиной перехода электронов в зону проводимости может быть не только напряжение, но и любое другое энергетическое воздействие, например свет. Световой квант hf, возбудивший электрон в валентной зоне, может заставить его перейти запрещенную зону при условии Q < hf , где h— постоянная Планка.

    Таким образом, есть два характерных отличительных признака полупроводников от проводников. Первый признак формальный — электропроводность проводников значительно выше, чем полупроводников, причем граничной считают электропроводность порядка 101/омм. Второй признак — возрастание электропроводности полупроводников с повышением температуры, в то время как электропроводность проводника уменьшается.

    По этим признакам следует считать, что почти все минералы и горные породы относятся к классу полупроводников с различной электропроводностью.

    25. ЕСТЕСТВЕННЫЕ ЭЛЕКТРИЧЕСКИЕ ПОЛЯ В ПОРОДАХ

    В массивах горных пород существуют естественные электрические поля: теллурические и локальные. Теллурические токи обусловлены вариациями и возмущениями магнитного поля Земли. Эти токи занимают огромное пространство литосферы. Локальные электрические поля возникают главным образом в результате окислительно-восстановительных, диффузионно-адсорбционных и фильтрационных, термоэлектрических и биологических явлений, а также взаимного трения отдельных массивов пород в процессах горообразования, сдвижений и т. д.

    Окислительно-восстановительные процессы протекают в определенных гидрохимических условиях на контакте между породами, обладающими электронной и ионной проводимостью. Ввиду того, что электронная проводимость присуща сульфидным рудам, антрацитам, графиту, окислительно-восстановительные процессы характерны для месторождений этих полезных ископаемых.

    Диффузионно-адсорбционные процессы связаны с образованием диффузионных потенциалов. Между растворами различной концентрации создается разность потенциалов, причем ее величина тем больше, чем больше отношение концентраций соприкасающихся растворов и чем больше различие в подвижности анионов и катионов. Диффузионно-адсорбционный ток обычно возникает на контактах между увлажненными слоями песка и глин.

    Фильтрационные поля связаны с выносом электрических зарядов, возникающих на границе твердой и жидкой фаз, при движении жидкости в породах. Они сопровождают все подземные потоки воды.

    Локальные электрические поля, таким образом, существуют на ограниченных площадях и обычно приурочены к месторождениям полезных ископаемых. Аномалии электрического поля, возникающие в результате локальных токов, достигают нескольких сотен милливольт. Наиболее благоприятны для возникновения интенсивных электрических полей руды с массивной текстурой и высокой электропроводностью. Вкрапленные руды с низкой электропроводностью создают слабые поля.

    26. МАГНИТНЫЕ СВОЙСТВА ПОРОД

    При изучении магнитных полей в породах наблюдаются закономерности, подобные тем, которые имеют место в электрическом поле. Магнитное поле характеризуется двумя показателями — напряженностью и индукцией.

    Напряженность магнитного поля определяет величину и направление действия магнитных сил. Магнитная индукция — векторная величина, характеризующая интенсивность магнитного поля.

    Между магнитной индукцией и напряженностью существует прямо пропорциональная зависимость



    где μа — коэффициент, указывающий на изменение напряженности поля при внесении в него какого-нибудь вещества. Этот коэффициент называется абсолютной магнитной проницаемостью.

    В вакууме μа = μ0 = 4π ∙ 10-7 и называется магнитной постоянной вакуума.

    Отношение μа / μ0называется относительной магнитной проницаемостью вещества μ.

    Если изменение электрического поля при внесении в него породы связано с ее поляризацией, то изменение магнитного поля связано с намагничиванием породы.

    Причиной намагничиваемости (магнитной поляризации) являются элементарные магнитные диполи, находящиеся в горной породе или возникающие в ней под действием внешнего поля.

    Произведение элементарного тока iна площадь магнитного диполя ∆s называется магнитным моментом.

    Если породу подвергнуть воздействию магнитного поля, то в результате взаимодействия поля с элементарными токами появятся силы, стремящиеся ориентировать магнитные диполи по направлению внешнего поля. Порода приобретает результирующий магнитный момент, т. е. намагничивается.

    Намагниченность (магнитная поляризация) породы оценивается пределом отношения суммы магнитных моментов в некотором объеме к величине этого объема при его неограниченном уменьшении; она прямо пропорциональна напряженности магнитного поля в веществе



    Коэффициент называется объемной магнитной восприимчивостъю, а отношение восприимчивости к плотности породы - удельной магнитной восприимчивостью.

    Результирующий магнитный момент породы является суммой магнитных моментов элементарных частиц (электронов, нейтронов и т. д.), атомов и доменов. Магнитный момент атомов и ионов горной породы при отсутствии внешнего магнитного поля может быть либо равен нулю, либо отличается от нуля.

    Если магнитный момент атомов равен нулю при = 0, то такие породы называются диамагнетиками. В диамагнетиках электронные оболочки атомов симметричны и замкнуты. Величина диамагнетизма определяется радиусами атомных орбит и в большинстве случаев не зависит от температуры.

    Магнитная проницаемость диамагнетиков меньше единицы. Поэтому такие породы, помещенные в магнитное поле, уменьшают плотность магнитного потока (его индукцию).

    Горные породы, атомы которых обладают магнитным моментом при отсутствии внешнего поля, называются парамагнетиками. Однако в целом образец парамагнетика при отсутствии поля не намагничен вследствие хаотичного распределения в нем магнитных моментов отдельных атомов. Лишь при внесении парамагнетика в магнитное поле его диполи ориентируются сообразно полю и, следовательно, образец намагничивается. Так как этому ориентированию препятствует тепловое движение атомов, магнитная проницаемость парамагнетиков с повышением температуры уменьшается. В целом же их магнитная проницаемость несколько больше единицы.

    Проницаемость диамагнетиков и парамагнетиков не зависит от напряженности магнитного поля при изменении его вплоть до 104э. Диамагнитной намагниченностью обладают все горные породы и минералы, однако, так как она незначительна по величине и направлена противоположно парамагнитной намагниченности, в сильных парамагнетиках последняя преобладает и становится решающей.

    Горные породы, у которых целые объемы (домены) обладают магнитным моментом при отсутствии внешнего поля, называются ферромагнетиками. Благодаря доменам магнитная проницаемость ферромагнетиков значительно больше, чем у парамагнитных пород. Намагниченность ферромагнетиков достигается не только внешним полем, но также и намагничивающим действием дополнительного внутреннего молекулярного поля.

    Намагниченность ферромагнетиков зависит от напряженности магнитного поля, причем при определенном значении эта зависимость исчезает — наступает насыщение. При снижении напряженности магнитного поля до нуля породы полностью не размагничиваются. Это явление называется остаточной намагниченностью. Для того чтобы породу размагнитить, к ней необходимо приложить некоторое обратно направленное магнитное поле. Величина этого поля характеризует породу и называется коэрцитивной силой.

    С повышением температуры увеличивается подвижность атомов и при определенной температуре (точка Кюри) домены полностью лишаются магнитных моментов и ферромагнетик переходит в парамагнетик.

    У ряда минералов, имеющих магнитную проницаемость того же порядка, что и парамагнетики, при определенных температурах наблюдается аномальный скачок в значении величины μ. Такие минералы входят в группу антиферромагнетиков и характеризуются наличием антипараллельно ориентированных взаимно компенсирующих магнитных диполей в решетке (подрешеток). При температуре фазового перехода происходит опрокидывание подрешеток, сопровождаемое резким всплеском магнитной проницаемости. К антиферромагнетикам относятся пиролюзит, алабандин, α-гематит, сидерит и другие минералы.

    Наибольшее значение имеют ферромагнитные породы, свойства которых обусловлены содержанием в них ферромагнитных минералов, в основном магнетита. Поэтому весьма часто наблюдается пропорциональность между содержанием в породах магнетита и их удельной магнитной восприимчивостью

    Магнитная проницаемость горной породы (для статистической смеси минералов) может быть определена по формуле логарифмического средневзвешенного



    где μi— магнитная проницаемость i-того минерала.

    На магнитные свойства пород оказывают также влияние форма, размеры и взаимное расположение зерен. Например, магнитная восприимчивость крупнозернистых ферромагнетиков больше, чем мелкозернистых. Это объясняется ростом числа доменов в зернах при увеличении их размеров.

    Магнитная восприимчивость горных пород зависит от намагниченности – для ферромагнетиков она постепенно увеличивается с ростом Н до определенного максимума, а затем убывает.

    Ферромагнитные породы характеризуются обратимыми и необратимыми кривыми зависимости μ = f(Т). Необратимые кривые наблюдаются у нестойких минералов, например у титаномагнетитов.
    Точка Кюри пород зависит от их строения и минерального состава. Если порода состоит из разных ферромагнитных минералов, то она может иметь несколько точек Кюри, соответствующих каждому минералу.

    С увеличением одноосного давления магнитная восприимчивость пород в направлении действия нагрузки обычно уменьшается. В направлении, перпендикулярном действию нагрузки, величина χ cначала быстро растет, а при дальнейшем сжатии уже не изменяется.

    С увеличением частоты поля магнитная проницаемость пород уменьшается. В переменных магнитных полях возникают потери магнитной энергии. Потери в переменном поле складываются из потерь на гистерезис и вихревые токи. Для их оценки используют коэффициент потерь.

    Некоторые ферромагнетики обладают ярко выраженными магни-тострикционными свойствами. При намагничивании таких веществ происходит их относительное удлинение (железо, магнетит) или укорачивание (никель).

    Подобно электрическим полям в земле существуют магнитные поля. Как известно, Земля в целом обладает сильным магнитным полем, имеются и местные магнитные аномалии, которые вызываются естественно намагниченными залежами ферромагнитных минералов (обычно железных руд). Классический пример — Курская магнитная аномалия, обусловленная огромными запасами железной руды.

    1 Валентные электроны – это электроны внешней оболочки атомов, которые могут участвовать в образовании химических связей, переходя с атомных на молекулярные орбитали.

    2 Ковалентная связь – это химическая связь, осуществляемая парой валентных электронов, обычно по одному от каждого атома.

    3 Ионы – это заряженные частицы, которые образуются в результате отрыва или присоединения дополнительных электронов к атому.

    4 Генезис – происхождение, возникновение.

    5 Например, гранит — это порода, состоящая в основном из полевого шпата (около 60%), слюды (5 - 10%) и кварца (25 - 30%). Если кварца в породе содержится меньше 25% , слюды около 15%, а калиевый полевой шпат замещен плагиоклазом, то такая порода уже называется гранодиоритом; при таком же минеральном составе, но порфировидной структуре (крупные выделения полевого шпата) она называется гранитовым порфиром. Осадочная горная порода, состоящая из минерала кальцита, называется известняком, порода, состоящая из доломита, — доломитом, а порода смешанного состава при количественном преобладании кальцита — доломитизированным известняком.

    6 Общее содержание в углях негорючих минеральных примесей характеризуется зольностью Ас. В состав золы входят различные минералы, слагающие вмещающие породы месторождения и пронизывающие угольные пласты, — кварц, глинистые минералы, полевые шпаты и пирит. Зольность углей может колебаться в весьма широких пределах — от 1 до 45%. Минеральные примеси в углях бывают свободные и связанные, причем последние наиболее трудно поддаются обогащению.

    По степени метаморфизации (углефикации) растительных остатков различают несколько типов углей: бурые угли, каменные угли, антрациты; с увеличением метаморфизации в углях растет содержание углерода, уменьшается содержание кислорода, водорода и летучих составных частей.


    7 Например, объемная плотность известняков может меняться от 1,5 до 2,5 г/см3, в то время как плотность слагающего известняк кальцита равна 2,7 г/см3.

    8 Так, у магматических пород наблюдается увеличение объемной плотности с уменьшением содержания кварца (рис. 3), поскольку кварц обладает меньшей плотностью (2,65 г/см3), чем железисто-магнезиальные минералы (оливин, пироксены, роговая обманка, биотит и т. д.), слагающие магматические породы.

    9 Диагенез осадков - процесс превращения осадков в горную породу, также превращение рыхлых горных пород, ведущее к их уплотнению и затвердеванию, совершаемое под влиянием гидрохимических процессов.

    10 Интрузия – это процесс внедрения магмы в толщу пород; также интрузией называется геологическое тело магматической породы, образовавшееся в процессе интрузии.

    11 Кливаж – (расслаивание) расщепление горных пород густой сетью трещин на тонкие пластины и призмы.

    12 Смачиваемость пород обуславливается их способностью концентрировать (адсорбировать) на своей поверхности молекулы жидкости за счет электростатического притяжения.

    13 Максимальная гигроскопичность и молекулярная влагоемкость обусловлены наличием в породе слабо связанной пленочной воды; она отличается от физически прочно связанной воды способностью передвигаться под действием молекулярных сил.


    14 Интерференция – представляет собой явление, возникающее при сложении в пространстве двух или нескольких волн с одинаковыми периодами. В зависимости от соотношения между фазами этих волн амплитуда результатирующей волны в разных точках пространства будет увеличиваться или уменьшаться.

    15 Дифракция – представляет собой явление, связанное с отклонением волн от прямолинейного распространения при взаимодействии с препятствием.

    16 Возгонка - переход вещества из твёрдого состояния в газообразное, минуя жидкую фазу.

    1   2   3   4   5   6   7   8


    написать администратору сайта