Главная страница
Навигация по странице:

  • Мини-революции

  • Глобальные научные революции

  • 25. Исторические типы научной рациональности.

  • 26. Особенности современной постнеклассической науки.

  • 27. Дифференциация и интеграция наук.

  • 60 ответов на вопросы кандидатского экзамена по философии науки. 1. Предмет, задачи и особенности философии науки


    Скачать 0.92 Mb.
    Название1. Предмет, задачи и особенности философии науки
    Дата06.12.2022
    Размер0.92 Mb.
    Формат файлаdoc
    Имя файла60 ответов на вопросы кандидатского экзамена по философии науки .doc
    ТипЗакон
    #830416
    страница5 из 18
    1   2   3   4   5   6   7   8   9   ...   18

    24. Научные революции как перестройка оснований науки. Типология научных революций. Концепция научных парадигм и революций Т.куна. Кун Т. «Структура научных революций».
    Изобретение новых средств наблюдения и эксперимента, открытие новых методов познания, усовершенствование методики обработки результатов исследования и другие новации означают значительный прогресс в науке. Однако рассматриваемые в отдельности и в изоляции от новых понятий, идей и принципов науки, они не означают еще появления революции, хотя во многом способствуют ее возникновению. Все подлинные научные революции, как правило, многоаспектны, включают множество сторон и факторов, и поэтому при анализе любой конкретной научной революции необходимо тщательно исследовать различные их аспекты, выявить и оценить роль и влияние каждого из них. Нередко, например, именно открытие новых средств наблюдения и измерения инициирует революцию в соответствующей отрасли науки: изобретение телескопа способствовало революции в астрономии, а микроскопа — в микробиологии. Но все подобные открытия и изобретения в конечном итоге привели к обнаружению новых, неизвестных раньше объектов для исследования науки. Эти новые объекты необходимо было осмыслить, выявить их свойства и закономерности, чтобы они вошли в содержание и структуру науки.

    Поэтому важнейшей характеристикой подавляющего большинства научных революций является не просто переход к исследованию новых объектов, применение средств и методов исследования, а создание новых теоретических структур для понимания и объяснения новых фактов. Именно благодаря этому было достигнуто не только расширение горизонта научного познания, но и раскрытие более глубоких и существенных свойств и закономерностей исследуемых явлений и процессов.

    Обычно началом революции в науке служит фундаментальная проблемная ситуация, которая выражается в несоответствии прежних теорий и методов вновь открытым существенным фактам, их неспособности объяснить эти факты. Прежние понятия, теории и методы оказываются в противоречии с новыми результатами теоретических или эмпирических исследований.

    Научные революции, как мы отметили, могут различаться по самым различным признакам, и поэтому не существует ни единой их классификации, ни даже типологии.

    Среди существующих типологий научных революций укажем на две из них. Первая обоснована В. Казютинским и предполагает вычленение трех типов научных революций. Мини-революции, которые относятся к отдельным разделам или отраслям знаний в рамках конкретной научной дисциплины. Локальные революции имеют место тогда, когда концептуальные изменения происходят в рамках научной дисциплины в целом. Глобальные научные революции характеризуют собой такие трансформации знания, которые радикально трансформируют существующие представления о предметных и методологических основах науки и приводят к становлению нового видения мира.
    В классификации, обоснованной в работах В. Степина, выделяется также три типа научных революций:

    1. внутридисциплинарные революции;

    2. научные революции, основанные на междисциплинарных взаимодействиях;

    3. глобальные научные революции.

    Особый интерес представляют именно глобальные революции, поскольку они ведут к изменению сложившихся типов научной рациональности и формированию новых исследовательских стратегий в научном познании. В истории науки выделяют четыре такие революции, сопровождавшиеся сменой типа научной рациональности. Первая свершилась в XVII веке, ознаменовав становление классического естествознания. Вторая произошла в конце XVIII -- первой половине XIX века и привела к формированию дисциплинарно организованной науки. В результате этих революций сформировалась и получила свое развитие классическая наука с характерным для нее стилем мышления. Третья революция, разворачивавшаяся с конца  XIX века вплоть до середины ХХ века, привела к формированию неклассической науки. Начиная с последней трети ХХ века, происходит четвертая научная революция, влекущая за собой становление постнеклассической науки с присущими ей  отличительными особенностями научной рациональности, включающей  гуманистические ориентиры в определение стратегий научного поиска.
    Томас Сэмюэл Кун -18 июля 1922, Цинциннати, Огайо — 17 июня 1996, Кембридж, Массачусетс) — американский историк и философ науки, считавший, что научное знание развивается скачкообразно, посредством научных революций.

    Концепция научных революций Куна представляет собой довольно-таки спорный взгляд на развитие науки. На первый взгляд, Кун не открывает ничего нового, о наличии в развитии науки нормальных и революционных периодов говорили многие авторы. В чем же особенность философских взглядов Куна на развитие научного знания?

    Во-первых, Кун представляет целостную концепцию развития науки, а не ограничивается описанием тех или иных событий из истории науки. Эта концепция решительно порывает с целым рядом старых традиций в философии науки.

    Во-вторых, в своей концепции Кун решительно отвергает позитивизм - господствующее в с конца XIX века течение в философии науки. В противоположность позитивисткой позиции в центре внимания Куна не анализ готовых структур научного знания, а раскрытие механизма развития науки, т.е., по существу, исследование движения научного знания.

    В-третьих, в отличие от широко распространенного кумулятивисткого взгляда на науку, Кун не считает, что в наука развивается по пути наращивания знания. В его теории накопление знаний допускается лишь на стадии нормальной науки.

    В-четвертых, научная революция, по Куну, сменяя взгляд на природу, не приводит к прогрессу, связанному с возрастанием объективной истинности научных знаний. Он опускает вопрос о качественном соотношении старой и новой парадигмы: является ли новая парадигма, пришедшая на смену старой, лучше с точки зрения прогресса в научном познании? Как мне кажется, новая парадигма, с точки зрения Куна, ничуть не лучше старой.

    Томас Кун пытался понять, как прогрессирует наука, связано ли ее развитие с простой индукцией либо оно является следствием фальсификации, выдвинутой Поппером, когда единичный факт оказывается достаточным для того, чтобы признать теорию неверной. Кун разработал концепцию, основанную на истории науки. Процесс научной работы, выстраивающий теорию и подтверждающий наличие проблемы, приводит к революционным изменениям, противоречащим самому этому процессу. Наука вовсе не освобождается от теорий и не заменяет их при каждом появлении противоречащего им факта, скорее большую часть времени она занимается последовательной накопительной работой. Ученый признавал, что базовая совокупность предположений, обслуживающих науку, некоторое время остается нормативной, то есть большинство исследователей как раз и занимаются проведением экспериментов в пределах принятых ими научных допущений. Установленные внутри научного сообщества определенные законы и теории являются основой для дальнейших изысканий. Эти законы и теории Кун и называет «парадигмой»....

    «Структура научных революций» — небольшая монография, впервые изданная Чикагским университетом (США) в 1962 году, была переведена на многие языки. В 1970 году в США вышло её второе, дополненное издание. С тех пор появилось множество публикаций, где так или иначе интерпретируется, используется, излагается или критикуется концепция Куна. Список литературы, посвящённой рассмотрению взглядов Куна, содержит не одну сотню названий.

    В «Структуре научных революций» Кун взглянул на развитие науки как на смену в первую очередь «психологических парадигм», взглядов на научную проблему, порождающих новые гипотезы и теории. Концепция в целом не дала ответа на многие вопросы, но она решительно порвала с рядом старых традиций и по-новому осветила назревшие проблемы в анализе науки. Смелость и новаторство работы, которую саму по себе можно назвать «сдвигом парадигмы», обусловили её популярность и породили многочисленные споры.

    25. Исторические типы научной рациональности.
    В начале XXI в. в условиях глобализации мира всё более ясными становятся как положительные, так и отрицательные стороны дальнейшего развития технологической цивилизации, основу которой составляет наука.

    Наука - это, прежде всего, специфическая форма культуры, порождающая особую, агрессивную форму рациональности, развивающуюся в сложном историческом социокультурном контексте. Анализ научной рациональности и научного знания является комплексным, междисциплинарным исследованием, предусматривающим синтез различных видов и форм знаний и духовности.

    Три крупные стадии исторического развития науки, каждую из которых открывает глобальная научная революция, можно охарактеризовать как три исторических этапа научной рациональности, сменявших друг друга в истории техногенной цивилизации:

    1) Это классическая рациональность, соответствующая классической науке;

    2) неклассическая рациональность, соответствующая неклассической науке;

    3) постнеклассическая рациональность.

    Каждый этап характеризуется особым состоянием научной деятельности, направленной на постоянный рост объективно-истинного знания.

    1 Классический этап научной рациональности.

    Классический тип научной рациональности (XVII - первая половина XIX в.в.), центрируя внимание на объекте, стремится при теоретическом объяснении и описании элиминировать все, что относится к субъекту (исследователю), средствам и операциям его деятельности. Объекты в классическом естествознании рассматривались преимущественно в качестве малых (простых) систем.

    На передний план выходит механика как наука о небесных и земных телах. Что касается физики, химии, биологии, геологии и др., то они только начинали делать первые самостоятельные шаги. Рассматриваемый период исследователи связывают и со становлением самой научной рациональности. «Рациональность», - пишет И. Лакатос, - «есть то, что соответствует определенным методологическим принципам, нормам и предписаниям». В рассматриваемый период исследовательская деятельность в астрономии, механике, физике была достаточно рационализирована, а сами эти науки занимали лидирующее место в естествознании. Физика, как наиболее разработанная область естествознания, задавала фон для развития других отраслей науки.

    2 Неклассический этап.

    Неклассическое естествознание (конец XIX - середина XX в.в.) способствовало значительному расширению поля исследуемых объектов, открывая пути к освоению больших, сложных саморегулирующихся систем. Неклассический тип рациональности учитывает связи между знаниями об объекте и характером средств и операций деятельности, рассматривая объект как вплетенный в человеческую деятельность.

    В XIX в. стало очевидным, что законы ньютоновской механики уже не могли играть роли универсальных законов природы. На эту роль стали претендовать законы электромагнитных явлений. Однако в результате новых экспериментальных открытий в области строения вещества в конце XIX — начале XX в. обнаруживалось множество непримиримых противоречий между электромагнитной картиной мира и опытными фактами. Это подтвердил в дальнейшем целый «каскад» научных открытий.

    Так с 1895 по 1897 гг. были открыты лучи Рентгена, радиоактивность, радий, первая элементарная частица — электрон. В 1900 г. немецкий физик Макс Планк ввел квант действия (постоянная Планка) и, исходя из идеи квантов, вывел закон излучения, названный его именем. Квантовая теория Планка вошла в противоречие с теорией электродинамики Максвелла. Возникли два несовместимых представления о материи: или она абсолютно непрерывна, или она состоит из дискретных частиц.

    В 1911 г. английский физик Эрнест Резерфорд предложил планетарную модель атома. Затем в 1913 г. Нильс Бор, предложивший на базе идеи Резерфорда и квантовой теории Планка свою модель атома.

    Весьма ощутимый «подрыв» классического естествознания был осуществлен затем Альбертом Эйнштейном, создавшим сначала, в 1905 г. специальную, а позднее, в 1916 г. и общую теорию относительности. В 1924 г. было сделано ещё одно крупное научное открытие: французский физик Луи де Бройль высказал гипотезу о том, что частице материи присущи и свойства волны (непрерывность) и дискретность (квантовость). Вскоре, уже в 25—30 гг. ХХ в. эта гипотеза была подтверждена экспериментально в работах Шредингера, Гейзенберга, Борна и других физиков. Таким образом, был открыт важнейший закон природы, согласно которому все материальные микрообъекты обладают как корпускулярными, так и волновыми свойствами.

    В этот период происходит сближение объекта и субъекта познания. Становится очевидной зависимость знания от применяемых субъектом методов и средств получения этого знания.

    3 Постнеклассический этап

    В современную эпоху происходят новые радикальные изменения в основаниях науки. Эти изменения можно охарактеризовать как четвертую глобальную научную революцию, в ходе которой рождается новая постнеклассическая наука. Интенсивное применение научных знаний практически во всех сферах социальной жизни, изменение самого характера научной деятельности, связанное с революцией в средствах хранения и получения знаний (компьютеризация науки, появление сложных и дорогостоящих приборных комплексов, которые обслуживают исследовательские коллективы и функционируют аналогично средствам промышленного производства и т.д.) меняет характер научной деятельности. Наряду с дисциплинарными исследованиями на передний план все более выдвигаются междисциплинарные и проблемно-ориентированные формы исследовательской деятельности. Если классическая наука была ориентирована на постижение все более сужающегося, изолированного фрагмента действительности, выступавшего в качестве предмета той или иной научной дисциплины, то специфику современной науки конца XX – начала XXI века определяют комплексные исследовательские программы, в которых принимают участие специалисты различных областей знания. Например, идеи синергетики, вызывающие переворот в системе наших представлений о природе, возникали и разрабатывались в ходе многочисленных прикладных исследований, выявивших эффекты фазовых переходов и образования диссипативных структур (структуры в жидкостях, химические волны, лазерные пучки, неустойчивости плазмы, явления выхлопа и флаттера).

    26. Особенности современной постнеклассической науки.
    Постнеклассическая наука формируется в 70-х годах XX в. Этому способствуют революция в хранении и получении знаний (компьютеризация науки), невозможность решить ряд научных задач без комплексного использования знаний различных научных дисциплин, без учета места и роли человека в исследуемых системах. Так, в это время развиваются генные технологии, основанные на методах молекулярной биологии и генетики, которые направлены на конструирование новых, ранее в природе не существовавших генов. На их основе, уже на первых этапах исследования, были получены искусственным путем инсулин, интерферон (защитный белок) и т.д. Основная цель генных технологий - видоизменение ДНК. Работа в этом направлении привела к разработке методов анализа генов и геномов (совокупность генов, содержащихся в одинарном наборе хромосом), а также их синтеза, т.е. конструирование новых генетически модифицированных организмов. Разработан принципиально новый метод, приведший к бурному развитию микробиологии - клонирование.

    Внесение эволюционных идей в область химических исследований привело к формированию нового научного направления - эволюционной химии. Так, на основе ее открытий, в частности разработки концепции саморазвития открытых каталитических систем, стало возможным объяснение самопроизвольного (без вмешательства человека) восхождения от низших химических систем к высшим. Наметилось еще большее усиление математизации естествознания, что повлекло увеличение уровня его абстрактности и сложности.

    Развитие вычислительной техники связано с созданием микропроцессоров, которые были положены также в основание создания станков с программным управлением, промышленных роботов, для создания автоматизированных рабочих мест, автоматических систем управления.

    Прогресс в 80 - 90-х гг. XX в. развития вычислительной техники был вызван созданием искусственных нейронных сетей, на основе которых разрабатываются и создаются нейрокомпьютеры, обладающие возможностью самообучения в ходе решения наиболее сложных задач. Большой шаг вперед сделан в области решения качественных задач.

    На базе фундаментальных знаний быстро развиваются сформированные в недрах физики микроэлектроника и наноэлектроника.

    что все чаще объектами исследования становятся сложные, уникальные, исторически развивающиеся системы, которые характеризуются открытостью и саморазвитием. Среди них такие природные комплексы, в которые включен и сам человек - так называемые "человекоразмерные комплексы"; медико-биологические, экологические, биотехнологические объекты, системы "человек-машина", которые включают в себя информационные системы и системы искусственного интеллекта и т.д. Поэтому не случайно на этапе постнеклассической науки преобладающей становится идея синтеза научных знаний - стремление построить общенаучную картину мира на основе принципа универсального эволюционизма, объединяющего в единое целое идеи системного и эволюционного подходов.

    27. Дифференциация и интеграция наук.
    Развитие науки характеризуется диалектическим взаимодействием двух противоположных процессов - дифференциацией (выделением новых научных дисциплин) и интеграцией (синтезом знания, объединением ряда наук - чаще всего в дисциплины, находящиеся на их "стыке"). На одних этапах развития науки преобладает дифференциация (особенно в период возникновения науки в целом и отдельных наук), на других - их интеграция, это характерно для современной науки.

    Процесс дифференциации, отпочкования наук, превращения отдельных "зачатков" научных знаний в самостоятельные (частные) науки и внутринаучное "разветвление" последних в научные дисциплины начался уже на рубеже XVI и XVII вв. В этот период единое ранее знание (философия) раздваивается на два главных "ствола" - собственно философию и науку как целостную систему знания, духовное образование и социальный институт. В свою очередь философия начинает расчленяться на ряд философских наук (онтологию, гносеологию, этику, диалектику и т.п.), наука как целое разделяется на отдельные частные науки (а внутри них - на научные дисциплины), среди которых лидером становится классическая (ньютоновская) механика, тесно связанная с математикой с момента своего возникновения.

    В последующий период процесс дифференциации наук продолжал усиливаться. Он вызывался как потребностями общественного производства, так и внутренними потребностями развития научного знания. Следствием этого процесса явилось возникновение и бурное развитие пограничных, "стыковых" наук.

    Как только биологи углубились в изучение живого настолько, что поняли огромное значение химических процессов и превращений в клетках, тканях, организмах, началось усиленное изучение этих процессов, накопление результатов, что привело к возникновению новой науки - биохимии. Точно так же необходимость изучения физических процессов в живом организме привела к взаимодействию биологии и физики и возникновению пограничной науки - биофизики. Аналогичным путем возникли физическая химия, химическая физика, геохимия и т.д. Возникают и такие научные дисциплины, которые находятся на стыке трех наук, как, например, биогеохимия. Основоположник биогеохимии В. И. Вернадский считал ее сложной научной дисциплиной, поскольку она тесно и целиком связана с одной определенной земной оболочкой - биосферой и с ее биологическими процессами в их химическом (атомном) выявлении. "Область ведения" биогеохимии определяется как геологическими проявлениями жизни, так и биохимическими процессами внутри организмов, живого населения планеты.

    Дифференциация наук является закономерным следствием быстрого увеличения и усложнения знаний. Она неизбежно ведет к специализации и разделению научного труда. Последние имеют как позитивные стороны (возможность углубленного изучения явлений, повышение производительности труда ученых), так и отрицательные (особенно "потеря связи целого", сужение кругозора - иногда до "профессионального кретинизма"). Касаясь этой стороны проблемы, А. Эйнштейн отмечал, что в ходе развития науки "деятельность отдельных исследователей неизбежно стягивается ко все более ограниченному участку всеобщего знания. Эта специализация, что еще хуже, приводит к тому, что единое общее понимание всей науки, без чего истинная глубина исследовательского духа обязательно уменьшается, все с большим трудом поспевает за развитием науки...; она угрожает отнять у исследователя широкую перспективу, принижая его до уровня ремесленника".

    Одновременно с процессом дифференциации происходит и процесс интеграции - объединения, взаимопроникновения, синтеза наук и научных дисциплин, объединение их (и их методов) в единое целое, стирание граней между ними. Это особенно характерно для современной науки, где сегодня бурно развиваются такие синтетические, общенаучные области научного знания как кибернетика, синергетика и др., строятся такие интегративные картины мира, как естественнонаучная, общенаучная, философская (ибо философия также выполняет интегративную функцию в научном познании).

    Тенденцию "смыкания наук", ставшей закономерностью современного этапа их развития и проявлением парадигмы целостности, четко уловил В. И. Вернадский. Большим новым явлением научной мысли XX в. он считал, что "впервые сливаются в единое целое все до сих пор шедшие в малой зависимости друг от друга, а иногда вполне независимо, течения духовного творчества человека. Перелом научного понимания Космоса совпадает, таким образом, с одновременно идущим глубочайшим изменением наук о человеке. С одной стороны, эти науки смыкаются с науками о природе, с другой - их объект совершенно меняется". Интеграция наук убедительно и все с большей силой доказывает единство природы. Она потому и возможна, что объективно существует такое единство.

    Таким образом, развитие науки представляет собой диалектический процесс, в котором дифференциация сопровождается интеграцией, происходит взаимопроникновение и объединение в единое целое самых различных направлений научного познания мира, взаимодействие разнообразных методов и идей.

    В современной науке получает все большее распространение объединение наук для разрешения крупных задач и глобальных проблем, выдвигаемых практическими потребностями. Так, например, сложная проблема исследования Космоса потребовала объединения усилий ученых самых различных специальностей. Решение очень актуальной сегодня экологической проблемы невозможно без тесного взаимодействия естественных и гуманитарных наук, без синтеза вырабатываемых ими идей и методов.
    1   2   3   4   5   6   7   8   9   ...   18


    написать администратору сайта