Главная страница
Навигация по странице:

  • 24. Виды кардиомиоцитов, их физиологическая характеристика Миоцит – структурная единица мышечной ткани. Кардиомиоцит

  • Проводящие кардиомиоциты

  • Спонтанная диастолическая деполяризация и автоматизм

  • 27. Изменение каких электрофизиологических параметров клеток пейсмекера влиет на частоту сердечных сокращений( я старалась)

  • Синусно-предсердный узел является ведущим в деятельности сердца (водитель ритма), в нем возникают импульсы, определяющие частоту и ритм сокращений сердца.

  • 29)Градиент автоматии различных отделов проводящей системы

  • 31) Сопряжение процессов возбуждения и сокращения в кардиомицитах. Роль потенциала действия в Са+ – индицированной мобилизации Са 2+

  • Пузырь со льдом местно следует применять при: а) приступе почечной колики. ФИЗИОЛОГИЯ ИТОГОВАЯ 3. 1. Преимущества метода графической регистрации деятельности сердца перед визуальным наблюдением


    Скачать 397.88 Kb.
    Название1. Преимущества метода графической регистрации деятельности сердца перед визуальным наблюдением
    АнкорПузырь со льдом местно следует применять при: а) приступе почечной колики
    Дата25.11.2020
    Размер397.88 Kb.
    Формат файлаdocx
    Имя файлаФИЗИОЛОГИЯ ИТОГОВАЯ 3.docx
    ТипДокументы
    #153739
    страница2 из 6
    1   2   3   4   5   6

    23.

    Опыт Штрауба: канюля через аорту проведена в желудочек, благодаря питательному раствору (Раствор был назван в честь Сиднея Рингера, который в 1882–1885 годах установил, что в растворе для перфузии сердца лягушки должны содержаться соли натрия, калия и кальция в определённой пропорции, чтобы сердце продолжало биться в течение длительного времени) сердце может сокращаться в течение суток.Оскар Лангендорф разработал первый препарат ex vivo по изучению изолированного сердца млекопитающих в 1895 году. В качестве перфузионной жидкости (перфузата) использовалось дефибрилированная кровь животных того же вида. В этом подходе коронарные сосуды перфузируются в обратном направлении (т.е. ретроградно) через аорту. Перфузии через коронарные сосуды было достаточно для обеспечения длительных сердечных сокращений. Однако, вследствие того, что нормальные пути циркуляции через желудочки не задействованы, эта модель не позволяет получать физиологически значимые данные по показателям "давление-объем", которые наблюдаются в целостном организме. В целом, препарат Лангендорфа обеспечивает только общую информацию по сердечной функции и дает данные, ограниченные динамикой в коронарных артериях.
    24. Виды кардиомиоцитов, их физиологическая характеристика

    Миоцит – структурная единица мышечной ткани. Кардиомиоцит – это вид миоцитов, представляющий собой основную структурно-функциональную единицу миокарда — миокардиальную клетку, ответственную за сократительную деятельность миокарда. Кардиомиоциты, исходя из их анатомического положения, делятся на предсердные кардиомиоциты и желудочковые кардиомиоциты. По своей функциональной деятельности кардиомиоциты делятся на рабочие (сократительные) кардиомиоциты, и проводящие (атипичные) кардиомиоциты. Между рабочими и проводящими кардиомиоцитами расположены переходные кардиомиоциты (Т-клетки), которые проводят импульсы от проводящих кардиомиоцитов к рабочим. В предсердиях находятся секреторные кардиомиоциты. Выделяя специфический гормон (натрийуретический пептид) в предсердия, секреторные кардиомиоциты, таким образом, принимают участие в регуляции водно-электролитного баланса.

    Рабочие кардиомиоциты (длина 100 мкм и диаметр – 15-20 мкм) выполняют основную часть сократительной работы сердца. Они составляют основную массу миокарда (95-99%). В предсердно-желудочковой проводящей системе рабочие кардиомиоциты отвечают за генерацию и распространение возбуждения, потенциалов действия по миокарду. Рабочие кардиомиоциты определяют частоту сокращений сердца и последовательность его возбуждения.

    Проводящие кардиомиоциты несколько больше и шире, клетки же водителя ритма несколько тоньше обычных. Есть два вида проводящих кардиомиоцитов — Р-клетки иклетки Пуркинье. Генерируя электрические импульсы, Р-клетки обеспечивают так называемый сердечный автоматизм (ритмическое сокращение сердца).

    Кардиомиоциты окружены обильной сетью капилляров. Клетки проводящей системы, помимо капилляров, окружены вегетативными нервными окончаниями. Близко расположенные клетки соединяются друг с другом с помощью вставочных дисков. Кардиомиоцит окружает мембрана — сарколемма. В сарколемме имеется множество складок, выпячиваний и карманов, поверх нее имеется дополнительное рыхлое покрытие толщиной 50 нм, которое называется гликокаликсом. Гликокаликс связан с прилегающими к клетке капиллярами и участвует в обмене веществ между капиллярами и клеткой. Кардиомиоциты соединены между собой межмембранными контактами — вставочными дисками. С помощью этих контактов за счет заполненных жидкостью каналов обеспечивается электрическое взаимодействие между кардиомиоцитами.

    Основным компонентом кардиомиоцитов являются миофибриллы. Миофибриллы содержат сократительные и регуляторные белки. К сократительным относятся миозин и актин, к регуляторным — тропомиозин и тропонин. Миозин образует толстые нити, или филаменты, актин — тонкие. Эти филаменты расположены параллельно друг другу, и каждая нить миозина окружена 6 нитями актина. Каждая нить актина, в свою очередь, окружена 6 нитями миозина. Диаметр толстых филаментов около 14 нм, длина — 1 500 нм, они находятся на расстоянии 20-30 нм друг от друга. Тонкие филаменты имеют диаметр примерно 7-8 нм.

    В кардиомиоците имеется 2 или более ядер. Они имеют веретенообразную форму и продольное расположение. На поверхности ядра имеется много углублений. Помимо указанных образований, в кардиомиоцитах имеются и другие структуры — пластинчатый комплекс, содержащий углеводные и белковые остатки, липидные образования, гликоген и т. д.

    25. Сравнительная характеристика электрофизиологических особенностей рабочих и проводящих кардиомиоцитов, их ионные механизмы и значение.( 2 варианта, если что то немного об этом есть в учебнике на стр 275)

    за фазой реполяризации каждого потенциала действия следует фаза медленной диастолической деполяризации. Фаза медленной диастолической деполяризации начинается сразу по завершении реполяризации и при достижении максимальногодиастолического потенциала. Самопроизвольную медленную диастолическую деполяризацию называют также пейсмекерным потенциалом клеток сердца, или предпотенциалом действия. Пейсмекерный потенциал снижается до критического уровня деполяризации, достигает его, что приводит к возникновению потенциала действия. Медленная диастолическая деполяризация аналогична

    локальному (местному) потенциалу. 
         

    Спонтанная диастолическая деполяризация и автоматизм

    Мембранный потенциал нормальных клеток рабочего миокарда предсердий и желудочков остается постоянным на уровне потенциала покоя в течение всей диастолы (см. рис. 3.1): если эти клетки не возбуждаются распространяющимся импульсом, то потенциал покоя в них поддерживается сколь угодно долго. В сердечных волокнах другого типа, например в специализированных волокнах предсердий или в волокнах Пуркинье проводящей системы желудочков, мембранный потенциал во время диастолы непостоянен и постепенно изменяется в сторону деполяризации. Если такое волокно не будет возбуждено распространяющимся импульсом раньше, чем мембранный потенциал достигнет порогового уровня, то в нем может возникнуть спонтанный потенциал действия (рис. 3.6). Изменение мембранного потенциала во время диастолы называется спонтанной диастолической деполяризацией, или фазой 4 деполяризации. Обусловливая возникновение потенциалов действия, этот механизм служит основой автоматизма. Автоматизм является нормальным свойством клеток синусового узла, мышечных волокон митрального и трикуспидального клапанов, некоторых участков предсердий, дистальной части АВ-узла, а также тканей системы Гиса — Пуркинье. В здоровом сердце частота возникновения импульсов вследствие автоматизма клеток синусового узла достаточно высока, что позволяет распространяющимся импульсам возбуждать другие потенциально автоматические клетки, прежде чем они спонтанно деполяризуются до порогового уровня. При этом потенциальная автоматическая активность других клеток обычно подавляется, хотя при целом ряде физиологических и патологических состояний она может проявляться (обсуждается ниже).

    27. Изменение каких электрофизиологических параметров клеток пейсмекера влиет на частоту сердечных сокращений( я старалась)

    Ритмические сокращения сердца возникают под действием импульсов, зарождающихся в нем самом. Это свойство называется автоматизмом. В норме ритмические импульсы генерируются только специализированными клетками водителя ритма (пейсмекера) и проводящей системы сердца.

    В норме водителем ритма служит синоатриальный (СА) узел - водитель ритма первого порядка, расположенный в стенке правого предсердия у места впадения в него верхней полой вены (см.рис.). Частота разрядов СА-узла в покое составляет около 70 в 1 мин. От этого узла возбуждение распространяется сначала по рабочему миокарду обоих предсердий. При распространении возбуждения по проводящей системе оно на короткое время задерживается в атриовентрикулярном (АВ) узле. Остальные отделы специализированной системы, к которым относят пучок Гиса с его левой и правой ножками и их конечные разветвления-волокна Пуркинье - проводят импульсы довольно быстро (со скоростью примерно 2 м/с), поэтому различные отделы желудочков достаточно синхронно охватываются возбуждением. Скорость распространения импульса от субэндокардиальных окончаний волокон Пуркинье по рабочему миокарду составляет около 1 м/с.

    Автоматические сокращения сердца зависят не только от деятельности сино-атриального узла (СА-узла). Остальные отделы проводящей системы также способны спонтанно генерировать импульсы, однако собственная частота разрядов клеток этих отделов мала. Она тем ниже, чем дальше от пейсмекера расположены клетки. Благодаря этому, в нормальных условиях потенциал действия в этих клетках возникает в результате прихода возбуждения от более часто разряжающихся верхних отделов, и их собственный автоматизм не успевает проявиться.

    Если по той или иной причине возбуждение СА-узла не возникает, либо (при синоатриальной блокаде) не может перейти на предсердие, роль водителя ритма берет на себя АВ-узел- пейсмекер второго порядка (частота АВ-ритма равна 40-60/мин). Если же проведение возбуждения от предсердий к желудочкам полностью нарушено (развилась полная поперечная блокада), то желудочки сокращаются в ритме пейсмекера третьего порядка, расположенного в вентрикулярной проводящей системе. СА-узел называют номотопным (нормально расположенным) центром, а очаги возбуждения в остальных отделах проводящей системы - гетеротопными (ненормально расположенными) центрами.

    В случае полной поперечной блокады предсердия и желудочки сокращаются независимо друг от друга - предсердия в ритме СА-узла, а желудочки со значительно меньшей частотой, присущей пейсмекерам третьего порядка (30-40/мин). При внезапном возникновении полной поперечной блокады желудочковые центры автоматизма начинают функционировать лишь через несколько секунд. Во время этой предавтоматической паузы кровоснабжение головного мозга ухудшается, что может привести к потере сознания и судорогам (приступ Морганьи-Адамса-Стокса). Если вентрикулярные водители ритма не включаются, то остановка желудочков может привести к необратимому повреждению мозга и даже к смертельному исходу.

    28) Проводящая система сердца , ее отделы, клеточный состав и значение. Роль в обеспечении хронотопографии процесса возбуждения.

    Проводящая состоит из синусно-предсердного (синоатриальный СА) узла- внутрисердечного генератора ритма, расположенного в стенке предсердья у устьев полых вен и предсердно-желудочкового ( Атриовентрикулярный АВ) узла, расположенного в межпредсердной перегородке на границе правого предсердия и желудочка. Предсердно-желудочковый узел переходит в предсердно-желудочковый пучок( атриовентрикулярный пучок АВП), который проходит между фиброзными кольцами предсердно-желудочковой перегородки делится на правую и левую ножки. В области верхушки ножки пучка загибаются и переходят в сердечных проводящих миоцитов. Отличительной особенностью проводящей системы сердца является наличие в ее клетках большого количества межклеточных контактов- нексусов. Эти контакты являются местом перехода возбуждения с одной клетки на другую.  Проводящая система включает специализированные кардиоммиоциты, называемые также атипичными. К ним относят:

    -          пейсмекерные клетки или водители ритма. Их главное свойство – неустойчивые потенциал покоя наружной мембраны. Благодаря К/Na -насосу натрия всегда больше внутри  клетки, а калия снаружи. Эта разность ионов и создает электрический потенциал по обе стороны плазмолеммы. При определенной стимуляции в мембране открываются натриевые каналы, натрий устремляется наружу и мембрана деполяризуется. У пейсмекерных клеток благодаря постоянной небольшой утечке ионов плазмолемма регулярно деполяризуется без всяких внешних сигналов. Это вызывает потенциал действия, распространяющийся и на соседние клетки, вызывая их сокращение. Главные водители ритма – это кардиомиоциты синусно-предсердного узла. Каждую минуту они генерируют 60-90 импульсов. Водители ритма второго порядка образуют предсердно-желудочковый узел. Они генерируют импульсы с частотой 40 импульсов в минуту, и в норме их активность подавляется главными пейсмекерами. Пейсмекерные кардиомиоциты – мелкие светлые клетки с крупным ядром. Их сократительный аппарат развит слабо.

    -          Проводящие кардиомиоциты обеспечивают быструю передачу возбуждения от водителей ритма к рабочим кардиомиоцитам. Эти клетки объединены в длинные тяжи, формирующие пучок Гиса и волокна Пуркинье. Пучок Гиса составлен клетками среднего размера с редкими длинными извилистыми миофибриллами и мелкими митохондриями. Волокна Пуркинье содержат самые крупные кардиомиоциты, которые могут контактировать сразу с несколькими рабочими клетками. Миофибриллы здесь образуют редкую неупорядоченную сеть, Т-система не развита. Вставовных дисков нет, но клетки объединены множеством нексусов, что обеспечивает высокую скорость проведения импульсов.

    Прводящая система является внутрисердечным генератором ритма сердца, что обеспечивает св-во автоматизма и проводит возбуждение в сердце,определяя последовательность сокращений предсердий и желудочков, а также синхронность сокращения участков миокарда желудочков Синусно-предсердный узел является ведущим в деятельности сердца (водитель ритма), в нем возникают импульсы, определяющие частоту и ритм сокращений сердца.

    29)Градиент автоматии различных отделов проводящей системы

     Сущест­вует так называемый градиент автоматии, выражающийся в убывающей способности к автоматии различных участков прово­дящей системы по мере их удаления от синусно-предсердного узла, генерирующего импульса с частотой до 60—80 в минуту.

    В обычных условиях автоматия всех нижерасположенных уча­стков проводящей системы подавляется более частыми импульсами, поступающими из синусно-предсердного узла. В случае поражения и выхода из строя этого узла водителем ритма может стать предсердно-желудочковый узел. Импульсы при этом будут возникать с частотой 40—50 в минуту. Если окажется выключенным и этот узел, водителем ритма могут стать волокна предсердно-желудочкового пучка (пучок Гиса). Частота сердечных сокращений в этом случае не превысит 30—40 в минуту. Если выйдут из строя и эти водители ритма, то процесс возбуждения спонтанно может возник­нуть в клетках волокон Пуркинье. Ритм сердца при этом будет очень редким — примерно 20 в минуту

    30) Сократимость миокарда

    Различают период абсолютной рефрактерности( полная невозбудимость), который в миокарде продолжается 0,27 с. Период относительной рефрактерности , во время которого сердечная мышца может сокращаться лишь на очень сильные раздражения( продолжается 0,03 с и соответствует фазе быстрой реполяризации ПД), и период супернормальной возбудимости, когда сердечная мышца может отвечать сокращением на подпороговые раздражения.

    Сокращение (систола) миокарда продолжается 0,3 с , что по времени примерно совпадает с общей рефрактерностью , представляющей собой сумму абсолютной и относительной рефрактерности. Следовательно в периоде сокращения сердце неспособно реагировать на другие раздражители. Раздражение, нанесенное на миокард в период расслабления( диастола), когда его возбудимость частично или полностью восстановлена, вызывает внеочередное сокращение сердца- экстрасистолу.

    31) Сопряжение процессов возбуждения и сокращения в кардиомицитах. Роль потенциала действия в Са+ – индицированной мобилизации Са 2+


    Распределение ИОНОВ К+ и Na+ в кардиомиоците к близко к распределению этих ионов в скелетной мышце. Однако в кардиомиоците при формировании ПД и в процессе сокращения существенную роль играют и ионы Са2+ Их концентрация снаружи клетки составляет около 2 ммоль/л, но внутри клетки концентрация свободных ионов Са2+ очень мала: 10-4 ммолъ/л. При сокращении концентрация свободных ионов Са2+ внутри клетки может возрастать до 103 ммоль/л, но в фазе реполяризации избыток этих ИОНОВ удаляется из клетки. Сохранение ионного балланса в кардиомиоцитах обеспечивает К+ - Na+- и Са2+-насосы, активно перекачивающие ионы Na+ и Са2+ наружу, и ионы К+ - внутрь клетки. Работу этих насосов обеспечивают ферменты К+ - Na+ -АТФаза и Са2+ -АТФаза, нахолящиеся в сарколемме миокардиальных клеток

    I фаза — деполяризация, как и в аксоне, определяется резким ростом проницаемости мембраны для ионов натрия. Порог активации натриевых каналов примерно -60 мВ, а время жизни 1 - 2 мс и может доходить до 6 мс. Фаза 1 в клетках миокарда предсердий, сердечных проводящих миоцитов (волокна Пуркинье) и миокарда желудочков имеет ту же природу, что и восходящая фаза ПД нервных и скелетных мышечных волокон — она обусловлена повышением натриевой проницаемости, т. е. активацией быстрых натриевых каналов клеточной мембраны. Во время пика ПД происходит изменение знака мембранного по­тенциала (с —90 до +30 мВ).

    II фаза — плато - характерна медленным спадом от пикового значения (= + 30 мВ) до нуля, В эюй фазе одновременно работают два типа каналов - медленные кальциевые каналы  и калиевые каналы.

    III фаза - реполяризация - характеризуется закрытием кальциевых каналов и усилением выходящего тока К+.

    32) Механизм сокращения кардиомицитов

    Поскольку главной функцией кардиомиоцитов является сокращение, то все основные биохимические процессы в них направлены на выполнение данной функции. Решающее значение в сокращении кардиомиоцитов имеют сократительные белки миокарда (актин и миозин), «регуляторные» белки (тропонин, тропомиозин, кальмодулин), кальций и АТФ. В фазу диастолы актин и миозин диссоциированы. В начале деполяризации клеточной мембраны кардиомиоцита незначительное количество натрия поступает в клетку. Поступивший натрий вызывает цепь реакций, приводящих к освобождению кальция из системы эндоплазматического ретикулума и внутренней поверхности клеточной мембраны. поступает дополнительное количество кальция. Цитоплазматический кальций связывается с кальмодулином. Комплекс «кальмодулин-кальций» активизирует кининазу легких цепей миозина, что приводит к их фосфорилированию и утрате способности ингибировать взаимодействие актина с тяжелыми цепями миозина. Одновременно Цитоплазматический кальций, преимущественно освобождающийся из эндоплазматического ретикулума, соединяется с тропонином С. Этот процесс сопровождается конформационными изменениями молекул тропонина и тропомиозина, также способствующими взаимодействию актина и миозина.
    1   2   3   4   5   6


    написать администратору сайта