физиология. 1. Раздражимость и возбудимость. Виды возбудимых тканей и их свойства. Общие и специфические
Скачать 1.33 Mb.
|
Спинальный шок – это изменение мышечного тонуса и отсутствие рефлексов, наблюдающееся сразу после повреждения спинного мозга и связей его с вышележащими структурами ЦНС. Он развивается вследствие выключения влияния вышележащих отделов ЦНС на спинной мозг. Спинальный шок у человека – около 2 месяцев. После исчезновения тормозного влияния вышележащих структур ЦНС резко увеличивается тонус мышц, иннервируемых с сегментов спинного мозга ниже места повреждения. Сгибательные и разгибательные рефлексы нижних конечностей резко повышаются. Это происходит вследствие повышения спонтанной активности γ-мотонейронов, приводящей к повышению спонтанной активности мышечных рецепторов и соответственно к повышению тонуса скелетных мышц. 15. Физиология ствола головного мозга (продолговатого мозга, варолиева моста, среднего мозга). Сенсорные, моторные и вегетативные функции стволовых структур. Статические и стато- кинетические рефлексы с участием структур ствола головного мозга. Непосредственным продолжением спинного мозга является продолговатый мозг. Продолговатый мозг и мост мозга (варолиев мост) вместе со средним и промежуточным мозгом образуют ствол мозга. В состав ствола мозга входит большое количество ядер, восходящих и нисходящих путей. Важное функциональное значение имеет находящаяся в стволе мозга ретикулярная формация. В продолговатом мозге нет четкого сегментарного распределения серого и белого вещества. Структурные образования заднего мозга. 1. V–XII пара черепных нервов. 2. Вестибулярные ядра. 3. Ядра ретикулярной формации. Основные функции заднего мозга проводниковая и рефлекторная. Через задний мозг проходят нисходящие пути (кортикоспинальный и экстрапирамидный), восходящие – ретикуло– и вестибулоспинальный, отвечающие за перераспределение мышечного тонуса и поддержание позы тела. Рефлекторная функция обеспечивает: 1) защитные рефлексы (слезотечение, мигание, кашель, рвоту, чиханье); 2) центр речи обеспечивает рефлексы голосообразования, ядра X, XII, VII черепно-мозговых нервов, дыхательный центр регулируют поток воздуха, кора больших полушарий – центр речи; 3) рефлексы поддержания позы (лабиринтные рефлексы). Статические рефлексы поддерживают тонус мышц для сохранения позы тела, статокинетические перераспределяют тонус мышц для принятия позы, соответствующей моменту прямолинейного или вращательного движения; 4) центры, расположенные в заднем мозге, регулируют деятельность многих систем. Сосудистый центр осуществляет регуляцию сосудистого тонуса, дыхательный – регуляцию вдоха и выдоха, комплексный пищевой центр – регуляцию секреции желудочных, кишечных желез, поджелудочной железы, секреторных клеток печени, слюнных желез, обеспечивает рефлексы сосания, жевания, глотания. Повреждение заднего мозга приводит к утрате чувствительности, волевой моторики, терморегуляции, но дыхание, величина артериального давления, рефлекторная активность при этом сохраняются. Проводниковая функция продолговатого мозга. Через продолговатый мозг проходят восходящие пути от спинного мозга к головному и нисходящие пути, связывающие кору больших полушарий со спинным мозгом. Продолговатый мозг регулирует работу спинного мозга. Средний мозг. Структурные единицы среднего мозга: 1) бугры четверохолмия; 2) красное ядро; 3) черное ядро; 4) ядра III–IV пары черепно-мозговых нервов. Бугры четверохолмия выполняют афферентную функцию, остальные образования – эфферентную. Бугры четверохолмия тесным образом взаимодействуют с ядрами III–IV пар черепно-мозговых нервов, красным ядром, со зрительным трактом. За счет этого взаимодействия происходит обеспечение передними буграми ориентировочной рефлекторной реакции на свет, а задними – на звук. Обеспечивают жизненно важные рефлексы: старт-рефлекс – двигательная реакция на резкий необычный раздражитель (повышение тонуса сгибателей), ориентир-рефлекс – двигательная реакция на новый раздражитель (поворот тела, головы). Передние бугры с ядрами III–IV черепно-мозговых нервов обеспечивают реакцию конвергенции (схождение глазных яблок к срединной линии), движение глазных яблок. Красное ядро принимает участие в регуляции перераспределения мышечного тонуса, в восстановлении позы тела (повышает тонус сгибателей, понижают тонус разгибателей), поддержании равновесия, подготавливает скелетные мышцы к произвольным и непроизвольным движениям. Черное вещество мозга координирует акт глотания и жевания, дыхания, уровень кровяного давления (патология черного вещества мозга ведет к повышению кровяного давления). Таким образом, средний мозг регулирует тонус мышц, что является необходимым условием координированных движений. Тонические рефлексы делят на две группы: статические и статокинетические. Статические рефлексы возникают при изменении положения тела, особенно головы, в пространстве. Статокинетические рефлексы проявляются при перемещении тела в пространстве, при изменении скорости движения (вращательного или прямолинейного). За счет среднего мозга расширяется рефлекторная деятельность организма (появляются ориентировочные рефлексы на звуковые и зрительные раздражения). Ретикулярная формация ствола мозга. Ретикулярная формация ствола мозга занимает центральное положение в продолговатом мозге, мосту мозга, среднем и промежуточном мозге. Ретикулярная формация ствола мозга оказывает восходящее влияние на клетки коры большого мозга и нисходящее на мотонейроны спинного мозга. 16. Структурно-функциональная организация мозжечка. Сенсорные, моторные и вегетативные функции. Последствия повреждения мозжечка по Лючиани. Связь мозжечка с моторной корой мозга. Мозжечок не имеет прямой связи с рецепторами организма. Многочисленными путями он связан со всеми отделами центральной нервной системы. К нему направляются афферентные (чувствительные) проводящие пути, несущие импульсы от проприорецепторов мышц, сухожилий, связок, вестибулярных ядер продолговатого мозга, подкорковых ядер и коры больших полушарий. В свою очередь мозжечок посылает импульсы ко всем отделам центральной нервной системы. Мозжечок (cerebellum, малый мозг) — одна из интегративных структур головного мозга, принимающая участие в координации и регуляции произвольных, непроизвольных движений, в регуляции вегетативных и поведенческих функций. Особенности морфофункциональной организации и связи мозжечка. Реализация указанных функций обеспечивается следующими морфологическими особенностями мозжечка: 1) кора мозжечка построена достаточно однотипно, имеет стереотипные связи, что создает условия для быстрой обработки информации; 2) основной нейронный элемент коры — клетка Пуркинье, имеет большое количество входов и формирует единственный аксонный выход из мозжечка, коллатерали которого заканчиваются на ядерных его структурах; 3) на клетки Пуркинье проецируются практически все виды сенсорных раздражений: проприоцептивные, кожные, зрительные,слуховые, вестибулярные и др.; 4) выходы из мозжечка обеспечивают его связи с корой большого мозга, со стволовыми образованиями и спинным мозгом. Мозжечок анатомически и функционально делится на старую, древнюю и новую части. К старой части мозжечка (archicerebellum) — вестибулярный мозжечок — относится клочково- флоккулярная доля. Эта часть имеет наиболее выраженные связи с вестибулярным анализатором, что объясняет значение мозжечка в регуляции равновесия. Древняя часть мозжечка (paleocerebellum) — спинальный мозжечок — состоит из участков червя и пирамиды мозжечка, язычка, околоклочкового отдела и получает информацию преимущественно от проприорецептивных систем мышц, сухожилий, надкостницы, оболочек суставов. Новый мозжечок (neocerebellum) включает в себя кору полушарий мозжечка и участки червя; он получает информацию от коры, преимущественно по лобно-мостомозжечковому пути, от зрительных и слуховых рецептирующих систем, что свидетельствует об его участии в анализе зрительных, слуховых сигналов и организации на них реакции. Мозжечок состоит из непарной средней части — червя (vennis) и парных полушарий (hemispheria cerebelli), охватывающих ствол головного мозга. Поверхность мозжечка разделена многочисленными щелями на тонкие листки, которые проходят приблизительно в поперечном направлении по полушариям и червю. Горизонтальная щель (fissura hdnzontalis) разделяет верхнюю и нижнюю поверхности мозжечка. В пределах долей листки мозжечка группируются в дольки, причем долькам червя соответствуют определенные дольки полушарий. Поверхность мозжечка покрывает кора. В белом веществе заложены ядра мозжечка: зубчатое (nucleus dentatus), пробковидное (nucleus emboliformis), шаровидные (nuclei globosi) и ядро шатра (nucleus fastigii). Мозжечока имеет три пары ножек (pedunculi cerebellares), соединяющих его со стволом головного мозга. Нижние мозжечковые ножки идут к продолговатому мозгу, средние — к мосту мозга, а верхние — к среднему мозгу. Кора мозжечка имеет три слоя: • поверхностный молекулярный, который содержит корзинчатые и звездчатые нейроны, разветвления нервных волокон, приходящих из других слоев коры и белого вещества; • слой грушевидных нейронов, состоящих из крупных нервных клеток (клеток Пуркинье); • глубокий зернистый слой, содержащий преимущественно малые зернистые нейроны. Афферентные волокна приходят в мозжечке по его ножкам от ядер преддверного и других черепных нервов, из спинного мозга в составе переднего и заднего спинно-мозжечковых путей, от ядер тонкого и клиновидного пучков и ядер моста. Большинство их оканчивается в коре мозжечка. Из коры нервные импульсы передаются в ядра по аксонам грушевидных нейронов. Ядра дают начало эфферентным путям мозжечка. К ним относятся мозжечково-ядерный путь к ядрам черепных нервов и ретикулярной формации ствола головного мозга; зубчато-красноядерный путь к красному ядру среднего мозга; зубчато- таламический путь к таламусу. Посредством своих афферентных и эфферентных путей мозжечка включается в экстрапирамидную систему. Кровоснабжение мозжечка осуществляют верхняя, нижняя передняя и нижняя задняя мозжечковые артерии. Мозжечок является центральным органом координации движений, осуществляющим согласование деятельности мышц-синергистов и антагонистов, участвующих в двигательных актах. Эта регулирующая произвольные движения функция мозжечка наряду с регуляцией мышечного тонуса обеспечивает точность, плавность целенаправленных движений, а также сохранение позы и равновесия тела. Лючиани - Им впервые была создана обоснованная теория о функциях мозжечка. Исследования Лучани показали, что основным комплексом двигательных нарушений мозжечкового происхождения является атаксия, включающая такие симптомы, как атония, астазия и астения (триада Лучани). Согласно Лучани, мозжечок является вспомогательным органом головного мозга в координации работы двигательного аппарата; он оказывает регулирующее влияние на образования центральной нервной системы и периферическую нервно-мышечную систему путём тонического, статического и трофического действий. Исследованиями Лучани было показано активное участие коры больших полушарий, в частности её сенсомоторной области, в компенсации двигательных мозжечковых расстройств (функциональная компенсация), а также возможность замещения дефектов движения, вызванных частичным удалением мозжечка, сохранившимися его участками (органическая компенсация). триадой А - астазия, атония и астения. Последующие исследователи добавили еще один симптом - атаксия. Безмозжечковая собака стоит на широко расставленных лапах, совершая непрерывные качательные движения (астазия). У нее нарушено правильное распределение тонуса мышц сгибателей и разгибателей (атония). Движения плохо координированы размашисты, несоразмерны, резки. При ходьбе лапы забрасываются за среднюю линию (атаксия), чего не бывает у нормальных животных. Атаксия объясняется тем, что нарушается контроль движений. Выпадает и анализ сигналов от проприорецепторов мышц и сухожилий. Собака не может попасть мордой в миску с едой. Наклон головы вниз или в сторону вызывает сильное противоположное движение. Астени́я - синдром хронической усталости — болезненное состояние, проявляющееся повышенной утомляемостью и истощаемостью с крайней неустойчивостью настроения, ослаблением самообладания, нетерпеливостью, неусидчивостью, нарушением сна, утратой способности к длительному умственному и физическому напряжению 17. Физиология структур промежуточного мозга (таламуса, гипоталамуса, эпиталамуса). Нейросекреция в гипоталамусе. Физиология гипоталамо-гипофизарной системы. Промежуточный мозг — часть переднего отдела ствола мозга. Основными образованиями промежуточного мозга являются зрительные бугры (таламус) и подбугровая область (гипоталамус). Зрительные бугры — массивное парное образование, они занимают основную массу промежуточного мозга. Через зрительные бугры к коре головного мозга поступает информация от всех рецепторов нашего организма, за исключением обонятельных. При повреждении зрительных бугров у человека наблюдается полная потеря чувствительности или ее снижение на противоположной стороне, выпадает сокращение мимической мускулатуры, которое сопровождает эмоции, могут возникать расстройства сна, понижение слуха, зрения и т. д. Гипоталамическая (подбугровая) область участвует в регуляции различных .видов обмена веществ (белков, жиров, углеводов, солей, воды), регулирует теплообразование и теплоотдачу, состояние сна и бодрствования. В ядрах гипоталамуса происходит образование ряда гормонов, которые затем депонируются в задней доле гипофиза. Передние отделы гипоталамуса являются высшими центрами парасимпатической нервной системы, задние — симпатической нервной системы. Гипоталамус участвует в регуляции многих вегетативных функций организма. Промежуточный мозг включает в себя таламус, эпиталамус (эпифиз) и гипоталамус и образует стенки III желудочка. Промежуточный мозг регулирует сложные двигательные рефлексы, координирует работу внутренних органов и осуществляет гуморальную регуляцию (обмен веществ, потребление воды и пищи, поддержание температуры тела). Вместе с большими полушариями промежуточный мозг участвует в организации всех сложных форм поведения, регуляции вегетативных реакций, то есть он интегрирует сенсорные, двигательные и вегетативные функции, обеспечивая деятельность организма как единого целого. Таламус (зрительный бугор) представляет собой комплекс ядер в промежуточном мозге (у человека примерно 60 ядер), образующих множество прямых и обратных связей с корой больших полушарий. В таламусе осуществляется анализ афферентных сигналов практически от всех чувствительных рецепторов (кроме обонятельных), организация интегративных процессов, необходимых для регуляции функционального состояния и высшей нервной деятельности. Ядра таламуса делят на две группы – специфические и неспецифические. Все ядра таламуса в разной степени обладают тремя общими функциями – переключающей, интегративной и модулирующей. Специфические ядра таламуса: 1) Переключающие ядра: 1а) сенсорные – передают афферентную (чувствительную) информацию в сенсорные зоны коры; 1б) несенсорные – переключают в кору несенсорную импульсацию из разных отделов головного мозга (например, лимбические ядра таламуса). 2) Ассоциативные ядра – принимают импульсацию от других ядер таламуса. Благодаря их деятельности осуществляется объединение деятельности таламических ядер и различных зон ассоциативной коры. Неспецифические ядра действуют как объединяющие посредники между стволом мозга и мозжечком, с одной стороны, и новой корой, лимбической системой и базальными ганглиями, с другой стороны, объединяя их в единую функциональную систему. Они обеспечивают модулирование, плавную настройку функционирования ЦНС. По своему функциональному значению они сходны с ретикулярной формацией. Но если ретикулярная формация осуществляет длительную и медленную активацию коры больших полушарий, то неспецифические ядра таламуса – быструю и кратковременную активацию. Гипоталамус является вентральной частью промежуточного мозга. Макроскопически он включает в себя преоптическую область и область перекреста зрительных нервов, серый бугор и воронку, сосцевидные тела. Ядра гипоталамуса: 1) преоптическая группа имеет выраженные связи с конечным мозгом и делится на медиальное и латеральное предоптические ядра; 2) передняя группа, в состав которой входят супраоптическое, паравентрикулярные ядра; 3) средняя группа состоит из нижнемедиального и верхнемедиального ядер; 4) наружная группа включает в себя латеральное гипоталамическое поле и серобугорные ядра; 5) задняя группа сформирована из медиальных и латеральных ядер сосцевидных тел и заднего гипоталамического ядра. Функции гипоталамуса: 1. В ядрах гипоталамуса локализуются центры, участвующие в вегетативной регуляции, а также нейроны, осуществляющие секрецию нейрогормонов. 2. Центр гомеостаза. Нейроны гипоталамуса могут реагировать на изменения температуры крови, электролитного состава, осмотического давления плазмы, количества и состав гормонов крови (благодаря повышенной проницаемости гематоэнцефалического барьера для многих веществ в области гипоталамуса). 3. Центры терморегуляции. В ядрах передней группы – центр физической терморегуляции (регуляция теплоотдачи), в ядрах задней группы – центр химической терморегуляции (регуляция теплопродукции). 4. Центры регуляции водного и солевого обмена. Среди нейронов паравентрикулярного и супраоптического ядер есть нейроны, продуцирующие антидиуретический гормон, а в латеральном гипоталамическом ядре – центр жажды, обеспечивающий поведение, направленное на прием воды. 5. Центры регуляции деятельности желудочно-кишечного тракта и пищевого поведения: в латеральном гипоталамическом ядре – центр голода, в вентромедиальном – центр насыщения. 6. В гипоталамусе есть центры белкового, углеводного и жирового обмена, центры регуляции сердечно-сосудистой системы, проницаемости сосудов и тканевых мембран, регуляции мочеотделения. 7. Гипоталамус участвует в регуляции сна и бодрствования (задний гипоталамус активизирует бодрствование, передний – сон). 8. Регуляция эмоционального поведения (раздражение заднего гипоталамуса вызывает активную агрессию, а передних отделов – пассивно-оборонительную реакцию, страх, ярость); центр полового поведения. Особое место в функциях гипоталамуса занимает регуляция деятельности гипофиза. Благодаря гипоталамо- гипофизарным связям гипоталамус является высшим центром эндокринной регуляции |