ФИЗИОЛОГИЯ ЗБ. 1. современный представления о строении биологических мембран
Скачать 0.52 Mb.
|
АВТОМАТИЯ - это способность к ритмическому сокращению без всяких внешних воздействий под влиянием импульсов, возникающих в самом сердце. Природа автоматии до сих пор до конца не выяснена. Но однозначно ясно, что возникновение импульсов связано с деятельностью атипических мышечных волокон, заложенных в некоторых участках миокарда. Внутри атипических мышечных клеток спонтанно генерируются электрические импульсы определенной частоты, распространяющиеся затем по всему миокарду. Первый такой участок находится в области устьев полых вен и называется синусный узел. В атипических волокнах этого узла спонтанно возникают импульсы с частотой 60-80 раз в минуту. Он является главным центром автоматии сердца. Второй участок находится в толще перегородки между предсердиями и желудочками и называется предсердно-желудочковый узел. Третий участок - это атипические волокна, составляющие пучок Гиса, лежащий в межжелудочковой перегородке. От пучка Гиса берут начало тонкие волокна атипической ткани - волокна Пуркинье, ветвящиеся в миокарде желудочков. Все участки атипической ткани способны генерировать импульсы, но их частота самая высокая в синусном узле, поэтому его называют водителем ритма первого порядка (пейсмекером первого порядка), и все другие центры автоматии подчиняются этому ритму. Совокупность всех уровней атипической мышечной ткани составляют проводящую систему сердца. Благодаря проводящей системе волна возбуждения, возникшая в синусном узле, последовательно распространяется по всему миокарду. Изолированное сердце при снабжении его питательным раствором способно сокращаться вне организма продолжительное время. 42. ВОЗБУДИМОСТЬ СЕРДЕЧНОЙ МЫШЦЫ. Возбудимость сердечной мышцы заключается в том, что под действием различных раздражителей (химических, механических, электрических и др.) сердце способно приходить в состояние возбуждения. В основе процесса возбуждения лежит появление отрицательного электрического потенциала на наружной поверхности мембран клеток, подвергшихся действию раздражителя. Как и в любой возбудимой ткани, мембрана мышечных клеток поляризована. В покое она снаружи заряжена положительно, изнутри - отрицательно. Разность потенциалов определяется различной концентрацией ионов Nа + и К + по обе стороны мембраны. Действие раздражителя увеличивает проницаемость мембраны для ионов К + и Nа +, происходит перестройка мембранного потенциала в результате возникает потенциал действия, распространяющийся и на другие клетки. Таким образом происходит распространение возбуждения по всему сердцу. Импульсы, возникшие в синусном узле, распространяются по мускулатуре предсердий. Дойдя до атриовентрикулярного узла, волна возбуждения распространяется по пучку Гиса, а затем по волокнам Пуркинье. Благодаря проводящей системе сердца наблюдается последовательное сокращение частей сердца: сначала сокращаются предсердия, затем желудочки. Особенность атриовентрикулярного узла - проведение волны возбуждения только в одном направлении: от предсердий к желудочкам. 43. ПЕРЕДАЧА ВОЗБУЖДЕНИЯ В МИОКАРДЕ. Появление электрических потенциалов в сердечной мышце связано с движение ионов через клеточную мембрану. Основную роль при этом играют катоины натрия и калия. Известно, что внутри клетки калия больше, чем в околоклеточной жидкости, концентрация внутриклеточного натрия, наоборот, меньше, чем околоклеточного. В состоянии покоя наружная поверхность клетки миокарда имеет положительный заряд в результате перевеса катионов натрия; внутренняя поверхность клеточной мембраны имеет отрицательный заряд в связи с перевесом внутри клетки анионов. В этих условиях клетка поляризована. Под влиянием внешнего электрического импулься клеточная мембрана становится проницаемой для катионов натрия, которые направляются внутрь клетки, и переносит туда свой положительный зарад. Наружная поверхность данного участка клетки приобретает отрицательный заряд в связи с перевесом там анаонов. Этот процесс называется ДЕПОЛЯРИЗАЦИЕЙ и связан с потенциалом действия. Скоро вся поверхность клетки снова приобретет отрицательный заряд, а внутренная – положительный. Таким образом, происходит ОБРАТНАЯ ПОЛЯРИЗАЦИЯ. Реполяризация мембраны вызывает постепенное закрывание калиевых и реактивацию натриевых каналов. В результате возбудимость миокардиальной клетки восстанавливается — это период так называемой относительной рефрактерности. В клетках рабочего миокарда (предсердия, желудочки) мембранный потенциал поддерживается на более или менее постоянном уровне. Вышеперечисленные процессы происходит во времы систолы. Если вся поверхность снова приобретает положительный заряд, а внутренняя – отрицательный, то это соответствует диастоле. Во время диастолы происходит постепенные обратные движения ионов калия и натрия, которые мало влияют на заряд клетки, поскольку ионы натрия выходят из клетки, а ионы калия входят в нее одновременно. Эти процессы уравновешивают друг друга. Вышенезванные процессы относятся к возбуждению единичного мышечного волокна миокарда. Возникнув при деполяризации, импульс вызывает возбуждение соседных участков миокарда, которые постепенно охватывает весь миокард, и развивается по типу цепной реакции. Возбуждение сердца начинается в снусном узле. Затем от синусного узла процесс возбуждения распространяется на предсердия. От предсердий оно идет к узлу. Обогнув это соединение, возбуждение переходит на ствол пучка Гиса. 44. ЭЛЕКТРОКАРДИОГРАФИЯ. ЭЛЕКТРОКАРДИОГРАФИЯ (ЭКГ) - является тестом, проведение которого позволяет получать ценную информацию о состоянии сердца. Суть данного метода состоит в регистрации электрических потенциалов, возникающих во время работы сердца и в их графическом отображении на дисплее или бумаге. ПРИМЕНЕНИЕ -Определение частоты и регулярности сердечных сокращений (например, экстрасистолы (внеочередные сокращения), или выпадения отдельных сокращений — аритмии). -Показывает острое или хроническое повреждение миокарда (инфаркт миокарда, ишемия миокарда). -Может быть использована для выявления нарушений обмена калия, кальция, магния и других электролитов. -Выявление нарушений внутрисердечной проводимости (различные блокады). Зубец Р отражает период возбуждения предсердий; зубец Q отражает период возбуждения межжелудочковой перегородки; зубец R самый высокий в ЭКГ, он соответствует периоду напряжения оснований желудочков; зубец S - полный охват миокарда желудочков возбуждением; зубец Т отражает полное восстановление мембранного потенциала клеток миокарда, т.е. потенциал покоя. ЭКГ представляет собой запись суммарного электрического потенциала, появившегося при возбуждении множества миокардиальных клеток, а метод исследования называется электрокардиографией. 45. РЕГУЛЯЦИЯ ДЕЯТЕЛЬНОСТИ СЕРДЦА. Приспособление деятельности сердца к изменяющимся потребностям организма происходит при помощи ряда регуляторных механизмов. Изменение уровня физической и эмоциональной нагрузки организма фиксируется различными рецепторами (хеморецепторами, механорецепторами), расположенными в различных органах, а также в стенках кровеносных сосудов. Воспринимаемые ими изменения состояния рефлекторно вызывают ответную реакцию в виде изменения уровня сердечной деятельности. Быстрое и точное приспособление кровообращения к конкретным потребностям организма достигаются благодаря совершенным и многообразным механизмам регуляции работы сердца. Эти механизмы можно подразделить на три уровня: ВНУТРИСЕРДЕЧНАЯ РЕГУЛЯЦИЯ (САМОРЕГУЛЯЦИЯ) связана с тем, что: сами клетки миокарда способны изменять силу сокращения в зависимости от степени их растяжения накапливать конечные продукты обмена, вызывающие изменение работы сердца. НЕРВНАЯ РЕГУЛЯЦИЯ осуществляется деятельностью автономной нервной системы - симпатической и парасимпатической биологически активные вещества, изменяющие силу их сокращений и т.д. Нервные импульсы, поступающие к сердцу по ветвям блуждающего нерва (парасимпатические импульсы) уменьшают силу и частоту сокращений. Импульсы, приходящие к сердцу по симпатическим нервам (их центры находятся в шейном отделе спинного мозга), повышают частоту и силу сердечных сокращений. ГУМОРАЛЬНАЯ РЕГУЛЯЦИЯ связана с изменением деятельности сердца под влиянием биологически активных веществ и некоторых ионов. Например, адреналин, норадреналин (гормоны коры надпочечников), глюкагон (гормон поджелудочной железы), серотонин (вырабатывается железами слизистой кишечника), тироксин (гормон щитовидной железы) и др., а также ионы кальция усиливают сердечную деятельность. Ацетилхолин, ионы калия уменьшают работу сердца. Сердце — это мощный насос, перекачивающий по кровеносным сосудам около 10 т крови в сутки. Организм испытывает на себе за свою жизнь все невзгоды окружающей среды, и чтобы помочь ему адаптироваться к новым условиям, сердце также должно перестроить свою работу. Это достигается за счет деятельности ряда регуляторных механизмов. 46. РЕГУЛЯЦИЯ ТОНУСА СОСУДОВ. Механизмы, регулирующие сосудистый тонус, можно условно разделить: 1) на местные, периферические, регулирующие кровоток в отдельном органе или участке ткани независимо от центральной регуляции, 2) центральные, поддерживающие уровень АД и системное кровообращение. МЕСТНЫЕ РЕГУЛЯТОРНЫЕ МЕХАНИЗМЫ Они реализуются уже на уровне эндотелия сосудов, который обладает способностью вырабатывать и выделять биологически активные вещества, способные расслаблять или сокращать гладкие мышцы сосудов в ответ на повышение АД. Эндотелий сосуда рассматривается как эндокринная железа, способная выделять свой секрет, который затем действует на гладкую мышцу сосуда и изменяет ее тонус. Увеличение АД растягивает клеточную мембрану, что увеличивает спонтанную активность гладких мышц и приводит к повышению их тонуса. ЦЕНТРАЛЬНЫЕ МЕХАНИЗМЫ РЕГУЛЯЦИИ Эти механизмы обеспечиваются волокнами, иннервирующими сосудистую стенку, а также влияниями центральной нервной системы. Вазоконстрикторный эффект симпатических нервов был показан Клодом Бернаром (1851 г.), перерезавшим на шее у кролика с одной стороны симпатический нерв. В результате сосуды уха на стороне перерезки нерва расширились, а ухо стало красным и горячим. Раздражение периферического конца перерезанного симпатического нерва привело к резкому сужению сосудов, а ухо стало бледным и холодным. Для сосудов брюшной полости главный вазоконстриктор — это нерв, в составе которого проходят симпатические волокна. Значит, симпатический нерв — основной вазоконстриктор, поддерживающий тонус сосудов на том или ином уровне в зависимости от количества импульсов, поступающих по его волокнам к сосуду. Свое влияние на сосуды симпатический нерв оказывает через норадреналин, в результате происходит сужение сосуда. Вазодилататорный эффект был получен при раздражении других парасимпатических нервов: языкоглоточного, расширяющего сосуды миндалин, околоушной железы, задней трети языка; верхнегортанного нерва — веточки блуждающего нерва, расширяющего сосуды слизистой гортани и щитовидной железы; тазового нерва, расширяющего сосуды органов малого таза. 47. ВЕНТИЛЯЦИЯ ЛЕГКИХ. ВЕНТИЛЯЦИЯ ЛЁГКИХ - это управляемый процесс, представляющий собой активный транспорт газовых смесей во время дыхательных движений в лёгкие и из лёгких. При вдохе кислород с вдыхаемой газовой смесью (вдыхаемым воздухом) переносится через дыхательные пути в лёгочные ацинусы, а двуокись углерода при выдохе с выдыхаемой газовой смесью переносится из лёгочных ацинусов наружу, в среду организма. Таким образом, вентиляция лёгких состоит из двух процессов: вентиляции дыхательных путей и вентиляции лёгочных ацинусов. Главная ЦЕЛЬ ВЕНТИЛЯЦИИ ЛЁГКИХ - обеспечение устойчивой непрерывной доставки в лёгочные альвеолы кислорода и устойчивого непрерывного выведения из организма двуокиси углерода. Вентиляция лёгких является результатом дыхательных движений. Дыхательные движения аппарата внешнего дыхания обеспечиваются ритмическими сокращениями дыхательных мышц. Величина легочной вентиляции определяется глубиной дыхания и частотой дыхательных движений. Количественной характеристикой легочной вентиляции служит МИНУТНЫЙ ОБЪЕМ ДЫХАНИЯ (МОД) - объем воздуха, проходящий через легкие за 1 минуту. МОД, который у человека в покое составляет в среднем 8 л/мин. МАКСИМАЛЬНАЯ ВЕНТИЛЯЦИЯ ЛЕГКИХ (МВЛ) - объем воздуха, который проходит через легкие за 1 минуту во время максимальных по частоте и глубине дыхательных движений, Максимальная вентиляция возникает во время интенсивной работы, при недостатке содержания 02 (гипоксия) и избытке СО2 (гиперкапния) во вдыхаемом воздухе. Для оценки вентиляционной функции легких, состояния дыхательных путей, изучения дыхания применяются различные методы исследования: ПНЕВМОГРАФИЯ, СПИРОМЕТРИЯ, СПИРОГРАФИЯ, ПНЕВМОСКРИН. С помощью спирографа можно определить и записать величины легочных объемов воздуха, проходящих через воздухоносные пути человека. При спокойном вдохе и выдохе через легкие проходит сравнительно небольшой объем воздуха. Это ДЫХАТЕЛЬНЫЙ ОБЪЕМ (ДО), который у взрослого человека составляет примерно 500 мл. При глубоком вдохе человек может дополнительно вдохнуть еще определенный объем воздуха. Этот РЕЗЕРВНЫЙ ОБЪЕМ ВДОХА (РОвд) - максимальный объем воздуха, который способен вдохнуть человек после спокойного вдоха. Величина резервного объема вдоха составляет у взрослого человека примерно 1,8-2,0 л. После спокойного выдоха человек может при глубоком выдохе дополнительно выдохнуть еще определенный объем воздуха. Это РЕЗЕРВНЫЙ ОБЪЕМ ВЫДОХА (РОВЫД), величина которого составляет в среднем 1,2 - 1,4 л. Объем воздуха, который остается в легких после максимального выдоха и в легких мертвого человека, - ОСТАТОЧНЫЙ ОБЪЕМ ЛЕГКИХ (00). Величина остаточного объема составляет 1,2 -1,5 л. ЕМКОСТИ ЛЕГКИХ: ОБЩАЯ ЕМКОСТЬ ЛЕГКИХ (ОЕЛ) - объем воздуха, находящегося в легких после максимального вдоха; ЖИЗНЕННАЯ ЕМКОСТЬ ЛЕГКИХ (ЖЕЛ) включает в себя дыхательный объем, резервный объем вдоха, резервный объем выдоха. ЖЕЛ - это объем воздуха, выдохнутого из легких после максимального вдоха при максимальном выдохе. ЕМКОСТЬ ВДОХА (ЕД.) равна сумме дыхательного объема и резервного объема вдоха, составляет в среднем 2,0 - 2,5 л; Воздух, находящийся в воздухоносных путях (полость рта, носа, глотки, трахеи, бронхов и бронхиол), не участвует в газообмене, и поэтому пространство воздухоносных путей называют ВРЕДНЫМ ИЛИ МЕРТВЫМ ДЫХАТЕЛЬНЫМ ПРОСТРАНСТВОМ. Во время спокойного вдоха объемом 500 мл в альвеолы поступает только 350 мл вдыхаемого атмосферного воздуха. Остальные 150 мл задерживаются в анатомическом мертвом пространстве. Составляя в среднем треть дыхательного объема, мертвое пространство снижает на эту величину эффективность альвеолярной вентиляции при спокойном дыхании. Вентиляцией легких обозначают процесс обмена воздуха между легкими и атмосферой. Количественным показателем вентиляции легких служит МИНУТНЫЙ ОБЪЕМ ДЫХАНИЯ. В покое у человека минутный объем дыхания составляет 6—8 л/мин. 48. МЕТОДЫ ИССЛЕДОВАНИЯ ВНЕШНЕГО ДЫХАНИЯ. ПНЕВМОГРАФИЯ ЗАПИСЬ (регистрация) дыхательных движений человека и животных. Пневмография широко применяется для получения сведений о характере дыхательных движений, регуляции внешнего дыхания и его нарушениях при различных заболеваниях и патологических состояниях. Используемая аппаратура имеет 3 основных элемента: датчик, непосредственно воспринимающий дыхательные движения; устройство, передающее показания датчиков к регистрирующему аппарату; регистрирующая система. Пневмография не даёт количественной оценки вентиляции лёгких, поэтому её обычно дополняют спирометрией или спирографией, обеспечивающими регистрацию основных лёгочных объёмов, а также пневмотахографией - регистрацией объёмных скоростей воздуха, поступающего в лёгкие при вдохе и покидающего их при выдохе. Для исследования значения отдельных мышц в осуществлении дыхательных движений и анализа особенностей внешнего дыхания Пневмография сочетают с электромиографией дыхательных мышц. СПИРОМЕТРИЯ — метод исследования функции внешнего дыхания, включающий в себя измерение объёмных и скоростных показателей дыхания. Выполняются следующие виды спирометрических проб: -спокойное дыхание; -глубокий выдох; -максимальная вентиляция лёгких; -функциональные пробы. МЕТОДИКА ПРОВЕДЕНИЯ СПИРОМЕТРИИ В данный момент используются цифровые приборы, которые состоят из датчика потока воздуха и электронного устройства, которое преобразует показания датчика в цифровую форму и производит необходимые вычисления. СПИРОГРАФИЯ - один из наиболее важных методов диагностики дыхательной системы. Данный метод диагностики проводится как при спокойном дыхании, так и при усиленном вдохе и выдохе. Измеряются объемная скорость воздушного потока, объемы дыхательной системы, их соотношения. Проведение спирографии крайне важно для диагностики и лечения заболеваний органов дыхания и сердечно-сосудистых заболеваний. СПИРОГРАФИЯ - позволяет определять форсированную жизненную емкость легких, емкость входа, емкость выхода, максимальную произвольную вентиляцию, и т.д. Кроме того, современные спирометрические аппараты дают функциональную интерпретацию дыхательной функции. Метод исследования функции легких путем графической регистрации во времени изменений их объема при дыхании. С помощью спирографии определяют число дыханий в 1 мин (частота дыхания, ЧД); объем воздуха, поступающего в легкие в течение одного вдоха (дыхательный объем, ДО); объем воздуха, поступающего в легкие за 1 мин (минутный объем дыхания, МОД); объем кислорода, потребляемого организмом в течение 1 мин (потребление кислорода, ПО2); объем кислорода, потребляемого организмом из 1 л поступающего в легкие воздуха (коэффициент использования кислорода, КИО2); максимальный объем воздуха, выдыхаемого из легких при спокойном выдохе после максимального глубокого вдоха (жизненная емкость легких. ГАЗОАНАЛИТИЧЕСКИЕ МЕТОДЫ позволяют определить величину функциональной остаточной емкости легких, получить представление об остаточном объеме легких, общей емкости легких и т.п. Полученные данные сравнивают с показателями, считающимися нормой (с учетом пола, возраста и роста пациента), что позволяет получить представление о состоянии бронхо-легочной системы в целом. |