Главная страница
Навигация по странице:

  • 2. ВОЗБУДИМЫЕ ТКАНИ И ИХ ОБЩИЕ СВОЙСТВА.

  • 3. МЕМБРАННЫЙ ПОТЕНЦИАЛ И ЕГО ПРОИСХОЖДЕНИЕ.

  • 4. ПРИРОДА ПОТЕНЦИАЛА ДЕЙСТВИЯ.

  • 5. ЗАКОНЫ РАЗДРАЖЕНИЯ ВОЗБУДИМЫХ ТКАНЕЙ.

  • 6. СООТНОШЕНИЕ ФАЗ ПОТЕНЦИАЛА.

  • 7. КЛАССИФИКАЦИЯ МЫШЕЧНЫХ ВОЛОКОН.

  • 8. ФУНКЦИИ СКЕЛЕТНЫХ И ГЛАДКИХ МЫШЦ.

  • 9. МЕХАНИЗМЫ СОКРАЩЕНИЯ МЫШЦ.

  • 10. ПРИНЦИПЫ РАБОТЫ ХИМИЧЕСКОГО СИНАПСА.

  • 11. НЕЙРОН, КАК СТРУКТУРНАЯ И ФУНКЦИОНАЛЬНАЯ ЕДИНИЦА ЦНС.

  • ФИЗИОЛОГИЯ ЗБ. 1. современный представления о строении биологических мембран


    Скачать 0.52 Mb.
    Название1. современный представления о строении биологических мембран
    Дата20.12.2021
    Размер0.52 Mb.
    Формат файлаdoc
    Имя файлаФИЗИОЛОГИЯ ЗБ.doc
    ТипДокументы
    #310791
    страница1 из 9
      1   2   3   4   5   6   7   8   9

    1. СОВРЕМЕННЫЙ ПРЕДСТАВЛЕНИЯ О СТРОЕНИИ БИОЛОГИЧЕСКИХ МЕМБРАН.

    Согласно современным представлениям, биологические мембраны образуют наружную оболочку всех животных клеток и формируют многочисленные внутриклеточные органеллы.

    МЕМБРАНЫ БИОЛОГИЧЕСКИЕ - функционально активные поверхностные структуры толщиной в несколько молекулярных слоев, ограничивающие цитоплазму и большинство органелл клетки, а также образующие единую внутриклеточную систему канальцев, складок, замкнутых областей.

    Биологические мембраны имеются во всех клетках. Мембранные структуры клетки представлены поверхностной (клеточной, или плазматической) и внутриклеточными (субклеточными) мембранами. Название внутриклеточных (субклеточных) мембран обычно зависит от названия ограничиваемых или образуемых ими структур. Так, различают митохондриальные, ядерные, лизосомные мембраны, мембраны пластинчатого комплекса аппарата Гольджи, эндоплазматического ретикулума, саркоплазматического ретикулума и др. Толщина биологических мембран — 7—10 нм, но их общая площадь очень велика.

    Одним из важных свойств живых клеток является их электрическая возбудимость, т.е. способность возбуждаться в ответ на действие электрического тока. Высокая чувствительность возбудимых тканей к действию слабого электрического тока впервые была продемонстрирована Гальвани в опытах на нервно-мышечном препарате задних лапок лягушки.

    Электрические явления, которые возникают в возбудимых тканях, обусловлены электрическими свойствами клеточных мембран.

    Наиболее характерным структурным признаком является то, что мембраны всегда образуют замкнутые пространства, и такая микроструктурная организация мембран позволяет им выполнять важнейшие функции.

    СТРОЕНИЕ И ФУНКЦИИ КЛЕТОЧНЫХ МЕМБРАН.

    1.БАРЬЕРНАЯ функция выражается в том, что мембрана при помощи соответствующих механизмов участвует в создании концентрационных градиентов, препятствуя свободной диффузии. К ним относятся механизмы создания потенциала покоя, генерация потенциала действия.

    2.РЕГУЛЯТОРНАЯ функция клеточной мембраны заключается в тонкой регуляции внутриклеточного содержимого и внутриклеточных реакций за счет рецепции внеклеточных биологически активных веществ, что приводит к изменению активности ферментных систем мембраны.

    3.ПРЕОБРАЗОВАНИЕ ВНЕШНИХ СТИМУЛОВ НЕЭЛЕКТРИЧЕСКОЙ ПРИРОДЫ В ЭЛЕКТРИЧЕСКИЕ СИГНАЛЫ (В РЕЦЕПТОРАХ).

    4.МЕТАБОЛИЧЕСКИЕ ФУНКЦИИ мембран определяются двумя факторами: во-первых, связью большого числа ферментов с мембранами, во-вторых, способностью мембран физически разделять клетку на отдельные отсеки, отграничивая друг от друга метаболические процессы, протекающие в них. Метаболические системы не остаются при этом полностью изолированными.

    5.МЕЖКЛЕТОЧНЫЕ ВЗАИМОДЕЙСТВИЯ. Определяют взаимодействие клетки с окружающей средой и формирование многоклеточного организма как единого целого. Молекулярно-мембранные аспекты межклеточных взаимодействий касаются прежде всего иммунных реакций, гормонального контроля роста и метаболизма, закономерностей эмбрионального развития.

    ХИМИЧЕСКИЙ АНАЛИЗ показал, что мембраны в основном состоят из липидов и белков, и углеводов, количество которых неодинаково у разных типов клеток. В настоящее время можно говорить о нескольких видах моделей клеточной мембраны, среди которых наибольшее распространение получила жидкостно-мозаичная модель.

    Согласно этой модели, мембрана представлена бислоем фосфолипидных молекул, ориентированных таким образом, что гидрофобные (не взаимодействуют с водой) концы молекул находятся внутри бислоя, а гидрофильные направлены в водную фазу. Такая структура идеально подходит для образования раздела двух фаз: вне- и внутриклеточной.

    В фосфолипидном бислое находятся белки. Эти белки выполняют различные функции, в том числе рецепторную, ферментативную, являются переносчиками ионов и молекул.

    ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ МЕМБРАН. Особая морфология клеточных мембран определяет их электрические характеристики, среди которых наиболее важными являются емкость и проводимость.

    Через фосфолипидный бислой могут диффундировать различные вещества, причем степень проницаемости, т. е. способность клеточной мембраны пропускать эти вещества, зависит от разности концентраций диффундирующего вещества по обе стороны мембраны, его растворимости в липидах и свойств клеточной мембраны. Увеличение проводимости свидетельствует об увеличении количества ионов, проходящих через мембрану.

    2. ВОЗБУДИМЫЕ ТКАНИ И ИХ ОБЩИЕ СВОЙСТВА.

    ВОЗБУДИМЫЕ ТКАНИ - это нервная, мышечная структуры, которые способны спонтанно или в ответ на действие раздражителя возбуждаться.

    ВОЗБУДИМОСТЬ – способность живой ткани отвечать на действие сильного, быстрого и длительно действующего раздражителя изменением физиологических свойств и возникновением процесса возбуждения. ВОЗБУЖДЕНИЕ - это генерация ПД + распространение ПД + ответ ткани, например, сокращение, выделение секрет.

    Мерой возбудимости является порог раздражения. ПОРОГ РАЗДРАЖЕНИЯ – это та минимальная сила раздражителя, которая впервые вызывает видимые ответные реакции. Так как порог раздражения характеризует и возбудимость, он может быть назван и порогом возбудимости. Раздражение меньшей интенсивности, не вызывающее ответные реакции, называют подпороговым.

    РАЗДРАЖИМОСТЬ, т. е. способность ткани изменять свои физиологические свойства и проявлять функциональные отправления в ответ на действие раздражителей.

    РАЗДРАЖИТЕЛИ – это факторы внешней или внутренней среды, действующие на возбудимые структуры.

    2. ПРОВОДИМОСТЬ - способность проводить возбуждение, т.е. проводить ПД

    3. СОКРАТИМОСТЬ - способность развивать силу или напряжение при возбуждении

    4. ЛАБИЛЬНОСТЬ - или функциональная подвижность - способность ткани воспроизводить определенное число волн возбуждения в единицу времени в точном соответствии с ритмом наносимых раздражений. Это свойство характеризует скорость возникновения возбуждения.

    5. СПОСОБНОСТЬ ВЫДЕЛЯТЬ СЕКРЕТ (секреторная активность), медиатор

    6. РЕФРАКТЕРНОСТЬ – временное снижение возбудимости одновременно с возникшим в ткани возбуждением. Рефрактерность бывает абсолютной (нет ответа ни на какой раздражитель) и относительной (возбудимость восстанавливается, и ткань отвечает на подпороговый или сверхпороговый раздражитель);

    3. МЕМБРАННЫЙ ПОТЕНЦИАЛ И ЕГО ПРОИСХОЖДЕНИЕ.

    В состоянии покоя между наружной и внутренней поверхностями мембраны клетки существует разность потенциалов, которая называется мембранным потенциалом (МП), или, если это клетка возбудимой ткани, — потенциалом покоя. Так как внутренняя сторона мембраны заряжена отрицательно по отношению к наружной. Первая теория возникновения и поддержания мембранного потенциала была разработана Ю.Бернштейном (1902). Исходя из того, что мембрана клеток обладает высокой проницаемостью для ионов калия и малой проницаемостью для других ионов.

    ПОТЕНЦИАЛ ПОКОЯ

    Разность электрических потенциалов между наружной и внутренней поверхностями биологической мембраны, обусловленная неодинаковой концентрацией ионов, главным образом натрия, калия и хлора и неодинаковой её проницаемостью для этих ионов.

    В нервных и мышечных клетках потенциал покоя участвует в поддержании состояния готовности молекулярной структуры мембраны к возбуждению в ответ на действие раздражителя. Все воздействия на клетку, вызывающие длительное стойкое снижение потенциала покоя. (например, нарушение обмена веществ, повышение внеклеточного содержания ионов К+, действие сильного электрического тока и т.д.), ведут к снижению возбудимости клетки или к полной утрате ею способности к генерации потенциалов действия.

    В среднем у клеток возбудимых тканей он достигает 50-80 мВ, со знаком минус внутри клетки. Обусловлен преимущественно ионами калия. Как известно ионов калия намного больше в клетке, чем в среде. В результате из-за того, что мембрана непроницаема для анионов клетки, на внутренней поверхности клетки образуется избыток отрицательно заряженных частиц, а на наружной - избыток положительно заряженных частиц. Возникает разность потенциалов. Чем выше концентрация калия в среде - тем меньше это отношение, тем меньше величина мембранного потенциала. В частности, известно, что натрия больше в среде (140 ммоль/л против 14 ммоль/л внутриклеточной). Поэтому натрий может войти в клетку. Но большая часть натриевых каналов в условиях покоя закрыта. Поэтому в клетку входит лишь небольшая часть ионов натрия. Но и этого достаточно, чтобы хотя бы частично компенсировать избыток анионов. Ионы хлора, наоборот, входят в клетку (частично) и вносят отрицательные заряды. В итоге величина мембранного потенциала определяется в основном калием, а также натрием и хлором.

    ПОТЕНЦИАЛ ДЕЙСТВИЯ

    Все раздражители, действующие на клетку, вызывают в первую очередь снижение ПП; когда оно достигает критического значения (порога), возникает активный распространяющийся ответ - ПД. Во время восходящей фазы ПД внутренняя сторона мембраны, заряженная в покое электроотрицательно, приобретает в это время положительный потенциал. Достигнув вершины, ПД начинает падать (нисходящая фаза ПД), и потенциал на мембране возвращается к уровню, близкому к исходному, - ПП. Полное восстановление ПП происходит только после окончания следовых колебаний потенциала, длительность которых обычно значительно превосходит продолжительность пика ПД. Согласно мембранной теории, деполяризация мембраны, вызванная действием раздражителя, приводит к усилению потока натрия внутрь клетки, что уменьшает отрицательный потенциал внутренней стороны мембраны - усиливает её деполяризацию. Это, в свою очередь, вызывает дальнейшее повышение проницаемости для натрия. Повышение проницаемости для натрия очень кратковременно и сменяется её падением, а, следовательно, уменьшением потока натрия внутрь клетки. Проницаемость для калия, в отличие от проницаемости для натрия , продолжает увеличиваться, что приводит к усилению потока калия из клетки. В результате этих изменений ПД начинает падать, что ведёт к восстановлению ПП. Таков механизм генерации ПД в большинстве возбудимых тканей.

    4. ПРИРОДА ПОТЕНЦИАЛА ДЕЙСТВИЯ.

    При исследовании ПД аксона было установлено, что фаза деполяризации обусловлена значительным повышением проницаемости для ионов натрия, которые входят в клетку в начале процесса возбуждения и таким образом уменьшают существующую разность потенциала (деполяризация). При этом чем выше степень деполяризации, тем выше становится проницаемость натриевых каналов, тем больше входит ионов натрия в клетку и тем выше степень деполяризации. В этот период происходит не только снижение разности потенциалов до нуля, но и изменение поляризованности мембраны - на высоте пика ПД внутренняя поверхность мембраны заряжена положительно по отношению к наружной. В результате натриевые каналы закрываются, и приток натрия в клетку прекращается. Затем наступает фаза реполяризации. Она связана с увеличением выхода из клетки ионов калия. Это происходит за счет того, что в результате деполяризации большая часть калиевых каналов, которые в условиях покоя были закрыты, открываются. Вначале этот процесс идет очень быстро, потом - медленно, поэтому фаза реполяризации вначале протекает быстро (нисходящая часть пика ПД), а потом медленно.

    В сердечной мышце природа ПД иная: процесс деполяризации обусловлен ионами натрия и кальция - эти ионы входят внутрь клетки в начале фазы деполяризации.

    В гладких мышцах сосудов, желудка, кишечника, матки и других образований генерация ПД связана с тем, что в момент возбуждения в клетку входят главным образом не ионы натрия, а ионы кальция.

    5. ЗАКОНЫ РАЗДРАЖЕНИЯ ВОЗБУДИМЫХ ТКАНЕЙ.

    Законы устанавливают зависимость ответной реакции ткани от параметров раздражителя. Эта зависимость характерна для высоко организованных тканей.

    Для того чтобы раздражитель вызвал возбуждение, он должен быть:

    1. достаточно сильным (закон силы),

    2. достаточно длительным (закон времени),

    3. достаточно быстро нарастать (закон градиента).

    Если эти условия не соблюдаются, то возбуждения не происходит.

    ЗАКОН СИЛЫ: чем больше сила раздражителя, тем больше величина ответной реакции. В соответствии с этим законом функционирует скелетная мышца. Амплитуда ее сокращений постепенно увеличивается с увеличением силы раздражителя вплоть до достижения максимальных значений. Это обусловлено тем, что скелетная мышца состоит из множества мышечных волокон, имеющих различную возбудимость. Увеличение силы раздражителя приводит к постепенному вовлечению волокон, имеющих меньшую возбудимость, поэтому амплитуда сокращения мышцы усиливается. Когда в реакции участвуют все мышечные волокна данной мышцы, дальнейшее повышение силы раздражителя не приводит к увеличению амплитуды сокращения.

    ЗАКОН «ВСЕ ИЛИ НИЧЕГО»: подпороговые раздражители не вызывают ответной реакции («ничего»), на пороговые раздражители возникает максимальная ответная реакция («все»). По закону «все или ничего» сокращаются сердечная мышца и одиночное мышечное волокно. Закон «все или ничего» не абсолютен. Во-первых, на раздражители подпороговой силы не возникает видимой ответной реакции, но в ткани происходят изменения мембранного потенциала покоя в виде возникновения местного возбуждения (локального ответа).

    ЗАКОН СИЛЫ-ДЛИТЕЛЬНОСТИ: раздражающее действие постоянного тока зависит не только от его величины, но и от времени, в течение которого он действует. Чем больше ток, тем меньше времени он должен действовать для возникновения возбуждения.

    ЗАКОН ГРАДИЕНТА РАЗДРАЖЕНИЯ. ГРАДИЕНТ – это крутизна нарастания раздражения. Ответная реакция ткани зависит до определенного предела от градиента раздражения. При сильном раздражителе примерно на третий раз нанесения раздражения ответная реакция возникает быстрее, так как она имеет более сильный градиент. Если постепенно увеличивать порог раздражения, то в ткани возникает явление аккомодации. АККОМОДАЦИЯ – это приспособление ткани к медленно нарастающему по силе раздражителю.

    6. СООТНОШЕНИЕ ФАЗ ПОТЕНЦИАЛА.

    Когда ткань возбуждается - генерирует ПД, то временно (соответственно с длительностью ПД) в ней меняется возбудимость: вначале ткань становится совершенно невозбудимой (абсолютная рефрактерность) - любой по силе стимул не способен вызвать в ней новый приступ возбуждения. Эта фаза обычно наблюдается во время пика ПД. Затем происходит постепенное восстановление возбудимости до исходного состояния (фаза относительной рефрактерности) - в этот момент раздражитель может вызвать возбуждение (генерацию нового ПД), но для этого он должен быть намного больше порогового (исходного). Затем (в фазу следовой негативности) возбудимость повышается (супервозбудимость, или фаза экзальтации). В этот момент подпороговые раздражители могут вызывать возбуждение. Наконец, в тканях, в которых ярко проявляется следовая гиперполяризация, наблюдается еще одна фаза - субнормальной возбудимости (сниженной возбудимости).

    7. КЛАССИФИКАЦИЯ МЫШЕЧНЫХ ВОЛОКОН.

    Морфологическая классификация

    -Поперечно-полосатая (поперечно-исчерченная)

    -Гладкая (неисчерченная)

    Классификация по типу контроля мышечной актичности

    -Поперечно-полосатая мышечная ткань скелетного типа .

    -Гладкая мышечная ткань внутренних органов.

    -Поперечно-полосатая мышечная ткань сердечного типа.

    КЛАССИФИКАЦИЯ СКЕЛЕТНЫХ МЫШЕЧНЫХ ВОЛОКОН

    ПОПЕРЕЧНО-ПОЛОСАТЫЕ МЫШЦЫ представляют собой максимально специализированый аппарат для осуществления быстрого сокращения. Поперечно-полосатые мышцы бывают двух типов - скелетные и сердечные. СКЕЛЕТНЫЕ мышцы состоят из мышечных волокон, каждое из которых представляет собой многоядерную клетку, полученную в результате слияния большого количества клеток. В зависимости от сократительных свойств, окраски и утомляемости мышечные волокна подразделяют на две группы - КРАСНЫЕ И БЕЛЫЕ. Функциональной единицей мышечного волокна является миофибрилла. Миофибриллы занимают практически всю цитоплазму мышечного волокна, оттесняя ядра на периферию.

    КРАСНЫЕ МЫШЕЧНЫЕ волокна (волокна 1 типа) содержат большое количество митохондрий с высокой активностью окислительных ферментов. Сила их сокращений сравнительно невелика, а скорость потребления энергии такова, что им вполне хватает аэробного метаболизма (используют кислород). Они участвуют в движениях, не требующих значительных усилий, - например, в поддержании позы.

    БЕЛЫМ МЫШЕЧНЫМ ВОЛОКНАМ (волокнам 2 типа) присуща высокая активность ферментов гликолиза, значительная сила сокращения и такая высокая скорость потребления энергии, для которой уже не хватает аэробного метаболизма. Поэтому двигательные единицы, состоящие из белых волокон, обеспечивают быстрые, но кратковременные движения, требующие рывковых усилий.

    КЛАССИФИКАЦИЯ ГЛАДКИХ МЫШЦ

    Гладкие мышцы подразделяются на ВИСЦЕРАЛЬНЫЕ (УНИТАРНЫЕ) И МУЛЬТИУНИТАРНЫЕ. ВИСЦЕРАЛЬНЫЕ ГЛАДКИЕ мышцы находятся во всех внутренних органах, протоках пищеварительных желез, кровеносных и лимфатических сосудах, коже. К МУЛЫПИУНИТАРНЫМ относятся ресничная мышца и мышца радужки глаза. Деление гладких мышц на висцеральные и мультиунитарные основано на различной плотности их двигательной иннервации. В ВИСЦЕРАЛЬНЫХ ГЛАДКИХ мышцах двигательные нервные окончания имеются на небольшом количестве гладких мышечных клеток.

    8. ФУНКЦИИ СКЕЛЕТНЫХ И ГЛАДКИХ МЫШЦ.

    ФУНКЦИИ И СВОЙСТВА ГЛАДКИХ МЫШЦ

    1. ЭЛЕКТРИЧЕСКАЯ АКТИВНОСТЬ. Гладкие мышцы характеризуются нестабильным мембранным потенциалом. Колебания мембранного потенциала независимо от нервных влияний вызывают нерегулярные сокращения, которые поддерживают мышцу в состоянии постоянного частичного сокращения — тонуса. Мембранный потенциал гладкомышечных клеток не является отражением истинной величины потенциала покоя. При уменьшении мембранного потенциала мышца сокращается, при увеличении — расслабляется.

    2. АВТОМАТИЯ. ПД гладких мышечных клеток имеют авторитмический характер, подобно потенциалам проводящей системы сердца. Это свидетельствует о том, что любые клетки гладких мышц способны к самопроизвольной автоматической активности. Автоматия гладких мышц, т.е. способность к автоматической (спонтанной) деятельности, присуща многим внутренним органам и сосудам.

    3. РЕАКЦИЯ НА РАСТЯЖЕНИЕ. В ответ на растяжение гладкая мышца сокращается. Это вызвано тем, что растяжение уменьшает мембранный потенциал клеток, увеличивает частоту ПД и в конечном итоге — тонус гладкой мускулатуры. В организме человека это свойство гладкой мускулатуры служит одним из способов регуляции двигательной деятельности внутренних органов. Например, при наполнении желудка происходит растяжение его стенки. Увеличение тонуса стенки желудка в ответ на его растяжение способствует сохранению объема органа и лучшему контакту его стенок с поступившей пищей. В кровеносных сосудах растяжение, создаваемое колебаниями кровяного давления.

    4. ПЛАСТИЧНОСТЬ. Изменчивость напряжения без закономерной связи с ее длиной. Так, если растянуть гладкую мышцу, то ее напряжение будет увеличиваться, однако если мышцу удерживать в состоянии удлинения, вызванным растяжением, то напряжение будет постепенно уменьшаться, иногда не только до уровня, существовавшего до растяжения, но и ниже этого уровня.

    5. ХИМИЧЕСКАЯ ЧУВСТВИТЕЛЬНОСТЬ. Гладкие мышцы обладают высокой чувствительностью к различным физиологически активным веществам: адреналину, норадреналину. Это обусловлено наличием специфических рецепторов мембраны гладкомышечных клеток. Если добавить адреналин или норадреналин к препарату гладкой мышцы кишечника, то увеличивается мембранный потенциал, уменьшается частота ПД и мышца расслабляется, т. е. наблюдается тот же эффект, что и при возбуждении симпатических нервов.

    ФУНКЦИИ И СВОЙСТВА СКЕЛЕТНЫХ МЫШЦ

    Скелетная мускулатура является составной частью опорно-двигательного аппарата человека. При этом мышцы выполняют следующие функции:

    1)обеспечивают определенную позу тела человека;

    2)перемещают тело в пространстве;

    3) перемещают отдельные части тела относительно друг друга;

    4) являются источником тепла, выполняя терморегуляционную функцию.

    Скелетная мышца обладает следующими важнейшими СВОЙСТВАМИ:

    1)ВОЗБУДИМОСТЬЮ — способностью отвечать на действие раздражителя изменением ионной проводимости и мембранного потенциала.

    2) ПРОВОДИМОСТЬЮ — способностью проводить потенциал действия вдоль и в глубь мышечного волокна по Т-системе;

    3) СОКРАТИМОСТЬЮ — способностью укорачиваться или развивать напряжение при возбуждении;

    4) ЭЛАСТИЧНОСТЬЮ — способностью развивать напряжение при растягивании.

    9. МЕХАНИЗМЫ СОКРАЩЕНИЯ МЫШЦ.

    Скелетная мышца представляет собой сложную систему, преобразующую химическую энергию в механическую работу и тепло. Мышечное волокно является многоядерной структурой, окруженной мембраной и содержащей специализированный сократительный аппарат — миофибриллы. Кроме этого, важнейшими компонентами мышечного волокна являются митохондрии, системы продольных трубочек — саркоплазматическая сеть (ретикулум) и система поперечных трубочек — Т-система.

    Сократительные белков миофибриллы состоят из актина и миозина. Актины представлены двойной нитью, закрученной в двойную спираль. В спирали располагаются молекулы белка тропомиозина и тропонина. Тропонин и тропомиозин играют важную роль в механизмах взаимодействия актина и миозина.

    В процессе сокращения мышечного волокна в нем происходят следующие преобразования:

    Передача возбуждения с двигательного нейрона на мышечное волокно происходит с помощью медиатора, возникает ПД. Таким образом, генерация ПД является первым этапом мышечного сокращения.

    Вторым этапом является распространение ПД внутрь мышечного волокна по поперечной системе трубочек, которая служит связующим звеном между поверхностной мембраной и сократительным аппаратом мышечного волокна. Электрическая стимуляция места контакта приводит к активации ферментов. Таким образом, на первых этапах происходит преобразование электрического сигнала ПД в химический — повышение внутриклеточной концентрации Са2+, т. е. электрохимическое преобразование.

    Участие ионов Са2+ в механизме взаимодействия актина и миозина опосредовано через тропонин и тропомиозин. Таким образом, четвертым этапом электромеханического сопряжения является взаимодействие кальция с тропонином.

    Сократительная способность скелетной мышцы характеризуется силой сокращения, которую развивает мышца, длиной укорочения, степенью напряжения мышечного волокна, скоростью укорочения и развития напряжения, скоростью расслабления.

    10. ПРИНЦИПЫ РАБОТЫ ХИМИЧЕСКОГО СИНАПСА.

    ХИМИЧЕСКИЙ СИНАПС — особый тип межклеточного контакта между нейроном и клеткой-мишенью. Состоит из трёх основных частей: нервного окончания с пресинаптической мембраной, постсинаптической мембраны клетки-мишени и синаптической щели между ними. Основная функция межнейронных синапсов и нервно-мышечных соединений состоит в передаче импульсов от рецепторов к эффекторам.

    Пресинаптическая мембрана покрывает нервное окончание, к которому приходит импульс. В нервном окончании содержится медиатор, заключённый в пузырьки (везикулы). Нервный импульс, пришедший по аксону к нервному окончанию, деполяризует пресинаптическую мембрану, что приводит к открытию электровозбудимых кальциевых каналов в ней. Ca2+ в более высокой концентрации содержится в межклеточной жидкости, но не может войти в клетку, пока эти каналы закрыты. Когда каналы открываются, ионы кальция устремляются внутрь нервного окончания и стимулируют выделение медиатора в синаптическую щель. При этом везикуля могут полностью сливаться с наружной мембраной нервного окончания, после выделения медиатора пузырек вновь отделяется от внешней мембраны окончания.

    Ширина синаптической щели 40—50 нм, она заполнена межклеточной жидкостью. Через щель молекулы медиатора диффундируют к постсинаптической мембране, дойдя до которой, действуют на белки-рецепторы. Некоторые из рецепторов являются ионными каналами для различных катионов и анионов, и действие на них медиатора опосредственно вызывает деполяризацию (возбуждающие медиаторы) или гиперполяризацию (тормозные медиаторы) постсинаптической мембраны.

    Для синапсов с химическим способом передачи возбуждения характерны синоптическая задержка проведения возбуждения, длящаяся около 0,5 мс.

    В тормозных синапсах этот процесс развивается следующим образом: аксонное окончание синапса деполяризуется, что приводит к появлению слабых электрических токов, вызывающих мобилизацию и выделение в синаптическую щель специфического тормозного медиатора. Он изменяет ионную проницаемость постсинаптической мембраны таким образом, что в ней открываются поры. Эти поры не пропускают ионы Na+ (что вызвало бы деполяризацию мембраны), но пропускают ионы К+ из клетки наружу, в результате чего происходит гиперполяризация постсинаптической мембраны.

    ПРОВЕДЕНИЕ НЕРВНОГО ИМПУЛЬСА ИМЕЕТ СЛЕДУЮЩИЕ ОСОБЕННОСТИ:

    1. ОДНОНАПРАВЛЕННОСТЬ ПЕРЕДАЧИ - нервные импульсы передаются только от пресинаптической мембраны к постсинаптической мембране. Таким образом, синапс работает по принципу клапана, что обеспечивает надежность работы нервной системы.

    3. АДАПТАЦИЯ - при непрерывной стимуляции количество освобождающегося в синапсе медиатора постепенно уменьшается до тех пор, пока запасы медиатора не будут истощены, тогда дальнейшая передача им сигналов тормозится. Это предотвращает повреждение эффекторов вследствие перевозбуждения.

    11. НЕЙРОН, КАК СТРУКТУРНАЯ И ФУНКЦИОНАЛЬНАЯ ЕДИНИЦА ЦНС.

    Структурной и функциональной единицей нервной системы является нервная клетка — нейрон.

    НЕЙРОНЫ — специализированные клетки, способные принимать, обрабатывать, кодировать, передавать и хранить информацию, организовывать реакции на раздражения, устанавливать контакты с другими нейронами, клетками органов. Уникальными особенностями нейрона являются способность генерировать электрические разряды и передавать информацию с помощью специализированных окончаний — синапсов.

    Функционально в нейроне выделяют следующие части: ВОСПРИНИМАЮЩУЮ — дендриты, мембрана сомы нейрона; ИНТЕГРАТИВНУЮ — сома с аксонным холмиком; ПЕРЕДАЮЩУЮ — аксонный холмик с аксоном. Сома обеспечивает также рост дендритов и аксона. Сома нейрона заключена в многослойную мембрану, обеспечивающую формирование и распространение электротонического потенциала к аксонному холмику.

    ВОСПРИНИМАЮЩАЯ ЧАСТЬ.

    ДЕНДРИТЫ — основное воспринимающее поле нейрона. Мембрана дендрита и синаптической части тела клетки способна реагировать на медиаторы, выделяемые аксонными окончаниями изменением электрического потенциала.

    Обычно нейрон имеет несколько ветвящихся дендритов. Необходимость такого ветвления обусловлена тем, что нейрон как ин формационная структура должен иметь большое количество входов. Информация к нему поступает от других нейронов через специализированные контакты, так называемые шипики.

    МЕМБРАНА СОМЫ НЕЙРОНА имеет толщину 6 нм и состоит из двух слоев липидных молекул. Гидрофильные концы этих молекул обращены в сторону водной фазы: один слой молекул обращен внутрь, другой – наружу. Гидрофильные концы повернуты друг к другу – внутрь мембраны.

    ИНТЕГРАТИВНАЯ ЧАСТЬ.
      1   2   3   4   5   6   7   8   9


    написать администратору сайта