|
Ответы на экзаменационные вопросы - 2007 год. 1 Структура и функции биологических мембран. Ионные каналы мембран и их особенности. Мембранноионные механизмы происхождения потенциала покоя. Электрогенез процесса возбуждения
Внутрисердечная регуляция. Установлено, что внутрисердечная регуляция осуществляется интракардиальными периферическими рефлексами. Интракардиальные рефлекторные дуги включают афферентные интрамуральные нейроны, дендриты которых образуют рецепторы растяжения миокарда и коронарных сосудов, а также эфферентные нейроны, аксоны которых иннервируют миокард и гладкую мускулатуру коронарных сосудов.
Эффекты раздражения эфферентных интрамуральных нейронов могут быть противоположными в зависимости от степени кровенаполнения сердца. При слабом кровенаполнении афферентация от рецепторов сердца ведет к возбуждению адренергических нейронов, а выделяемый ими медиатор норадреналин оказывает стимулирующее влияние на сердце. При чрезмерном наполнении камер сердца кровью и интенсивном раздражении рецепторов возбуждаются холинергические эфферентные нейроны, оказывая тормозные эффекты на сердце.
Внутрисердечные рефлексы обеспечивают «сглаживание» тех изменений в деятельности сердца, которые возникают за счет механизмов гомео- или гетерометрической саморегуляции, что необходимо для поддержания оптимального уровня сердечного выброса.
Внесердечная нервная регуляция сердечной деятельности осуществляется с помощью центробежных нервов сердца, принадлежащих вегетативной нервной системе.
Парасимпатическая иннервация представлена ветвями блуждающих нервов, отходящими от общих стволов этих нервов в верхней части грудной полости. Преганглионарные волокна заканчиваются на интрамуральных ганглионарных нейронах, имеющих короткие аксоны. Если на шее животного перерезать один блуждающий нерв, а его периферический конец, идущий к сердцу, раздражать электрическим током, то при слабом раздражении возникает урежение сокращений сердца и ослабевает их сила. Если раздражение усилить, может произойти полная остановка сердца во время диастолы желудочков. В настоящее время в интрамуральных ганглиях наряду с холинергическими обнаружены адренергические нейроны, которые и обеспечивают сердечную деятельность и иннервируют главным образом предсердия. Установлено, что правый блуждающий нерв в большей степени влияет на синусный, а левый — на атриовентрикулярный узел.
Симпатическая иннервация. Ветви симпатических нервов берут начало от грудного отдела спинного мозга и прерываются в верхнем, среднем шейных и звездчатых ганглиях. Постганглионарные волокна иннервируют весь миокард, но в основном предсердия. Обнаружено, что раздражение симпатических нервов оказывает влияние, противоположное действию блуждающих нервов: увеличиваются частота и сила сердечных сокращений, улучшается проводимость и повышается возбудимость. И.П. Павлов открыл в составе симпатического нерва особую веточку, раздражение которой усиливает сокращение сердечной мышцы без учащения ритма. Этот нерв получил название усиливающего нерва Павлова. Влияние усиливающего нерва на деятельность сердца объясняется усилением процессов обмена веществ, их улучшением в тканях сердца, т.е. положительным трофическим влиянием.
Рефлекторная внесердечная регуляция. В целом организме влияние ЦНС на сердце осуществляется рефлекторно. Значительную роль в рефлекторной регуляции деятельности сердца играют рецепторные образования, расположенные в рефлексогенных зонах кровеносных сосудов: дуге аорты, сонном синусе, верхней полой вене и правом предсердии. Кроме того, рефлекторные влияния на работу сердца осуществляются с механорецепторов, расположенных в брыжейке, кишечнике, желудке. Существуют рефлекторные влияния и с других рецепторов организма человека. Всякого рода болевые, температурные, световые и другие раздражители в той или иной степени изменяют сердечную деятельность.
Гуморально-гормональная регуляция. Гуморальная регуляция сердечной деятельности осуществляется за счет химических веществ, находящихся в крови, гормонов, различных ионов (Са2+, К+, Mg2+) и биологически активных веществ различной химической природы. Например, гормон мозгового слоя надпочечников адреналин вызывает учащение сердечной деятельности и увеличивает силу сердечных сокращений. Сходное влияние на сердце оказывают ионы кальция. Адреналин и ионы кальция действуют на сердце подобно влиянию симпатической нервной системы, однако каждый из них имеет свои особенности.
Из других биологически активных веществ, содержащихся в крови, следует отметить действие глюкагона, серотонина, ангиотензина II, вызывающих положительный инотропный эффект. Гормоны щитовидной железы (тироксин и трийодтиронин) усиливают сердечную деятельность, способствуя более частой генерации импульсов, увеличению силы сердечных сокращений и усилению транспорта кальция. Тироидные гормоны повышают чувствительность сердца к катехоламинам — адреналину, норадреналину. Простагландины увеличивают силу и частоту сердечных сокращений за счет усиления коронарного кровотока и метаболизма сердечной мышцы. Кинины (брадикинин, лизилбрадикинин) также вызывают учащение сердечной деятельности в результате высвобождения катехоламинов. № 19 Электрокардиография. Природа ЭКГи методика регистрации ЭКГ. Характеристика ЭКГ: генез зубцов, сегментов и интервалов. Значение ЭКГ в клинике.
Электрокардиография. При возбуждении сердечной мышцы возникающие на ее поверхности электрические потенциалы создают в окружающих тканях динамическое электрическое поле, которое может быть зарегистрировано с поверхности тела. Регистрация биоэлектрических явлений, возникающих при возбуждении сердца, получила название электрокардиографии, а ее графическое выражение, отражающее возникновение, распространение и окончание возбуждения в различных отделах сердца,— электрокардиограммы (ЭКГ). В норме на ЭКГ различают 6 зубцов, обозначенных буквами Р, Q, R, S, Т. Интервалы между зубцами обозначают двумя буквами соответственно зубцам, между которыми они заключены.
Характеристика ЭКГ.
Зубец Ротражает процесс возбуждения в миокарде предсердий. Доказано, что возбуждение правого предсердия происходит раньше левого на 0,02—0,03 с, поэтому первая половина зубца Р до вершины соответствует возбуждению правого предсердия, вторая — левого предсердия. Продолжительность его не превышает 0,11 с. Процесс реполяризации предсердий на нормальной ЭКГ не выражен.
Интервал P—Qсоответствует так называемой атриовентрикулярной задержке. Его продолжительность зависит от частоты сердечного ритма, однако в норме он находится в пределах 0,12—0,20 с.
Зубец Qявляется первым зубцом желудочкового комплекса, всегда обращенным книзу, и отражает процесс распространения возбуждения из атриовентрикулярного узла на межжелудочковую перегородку и папиллярные мышцы. Это наиболее непостоянный зубец ЭКГ, он может отсутствовать во всех отведениях. Глубина зубца Qв норме не превышает 1/4 зубца R Зубец Rвсегда направлен вверх. Он отражает процессы деполяризации стенок левого и правого желудочков и верхушки сердца.
Зубец S, как и Q,— непостоянный отрицательный зубец ЭКГ. Он отражает несколько более поздний охват возбуждением отдаленных, базальных участков миокарда и субэпикардиальных слоев миокарда.
Зубец Тотражает процесс быстрой реполяризации миокарда желудочков. Его ширина колеблется от 0,1 до 0,25 с, однако не имеет существенного значения при анализе ЭКГ. В целом желудочковый комплекс QRSTотражает процесс распространения возбуждения и прекращения его в миокарде желудочков. Ширина комплекса QRS в норме не превышает 0,1 с.
Сегмент ST — отрезок времени от конца комплекса QRSдо начала зубца Т, отражающий состояние уравновешенности потенциалов всех участков миокарда (полный охват желудочков возбуждением) и период медленной реполяризации. В норме сегмент STрасположен на изоэлектри-ческой линии.
За зубцом Т следует изоэлектрический интервал Т—Р, соответствующий периоду, когда все сердце находится в состоянии покоя (во время диастолы).
Зубец Uпоявляется через 0,01—0,04 с после зубца Т; он имеет ту же полярность, что и зубец Т, продолжительность его не превышает 0,16 с. Его появление связывают с электрическими потенциалами, возникающими при растяжении желудочков в начальной фазе диастолы или с явлениями следовой реполяризации волокон проводящей системы сердца.
Интервал Q—Т— от начала зубца Qдо конца зубца Т — соответствует электрической систоле желудочков. Его длительность зависит от ЧСС. Эта зависимость выражена формулой Базетта, по которой легко рассчитать должную величину интервала Q—T и сопоставить с фактической: Значение ЭКГ в клинике. По данным ЭКГ можно оценить ритм сердца и диагностировать его нарушения, выявить различного рода нарушения и повреждения миокарда (включая проводящую систему), контролировать действие кар-диотропных лекарственных средств.
Регистрация электрокардиограммыпроизводится с помощью электрокардиографа путем различных отведений от поверхности тела. Для записи ЭКГ традиционно используют три стандартных отведения по Эйнтховену: I отведение (правая рука — левая рука), II отведение (правая рука — левая нога), III отведение (левая рука — левая нога). Кроме того, в клинике используют дополнительно усиленные отведения по Гольдбергеру, грудные отведения по Вильсону и отведения по Небу.
|
|
|
|
|
|