Главная страница
Навигация по странице:

  • 4 вопрос Гипоксия

  • 1 вопрос Местные механизмы регуляции кровообращения

  • Сосудодвигательный центр

  • Тип раздражителя Состояние реактивности организма Тип ответной реакции организма

  • 3 вопрос Роль центральной нервной системы в развитии лихорадки Кора головного мозга и подкорковые центры.

  • Патфиз колок. Патфиз колок 2-2. 1 вопрос. Артериальная гиперемия


    Скачать 1.79 Mb.
    Название1 вопрос. Артериальная гиперемия
    АнкорПатфиз колок
    Дата15.04.2023
    Размер1.79 Mb.
    Формат файлаpdf
    Имя файлаПатфиз колок 2-2.pdf
    ТипДокументы
    #1063649
    страница2 из 13
    1   2   3   4   5   6   7   8   9   ...   13
    3 вопрос
    Термочувствительные нервные клетки преоптической области гипоталамуса непосредственно «измеряют» температуру артериальной крови, протекающей через мозг, и обладают высокой чувствительностью к температурным изменениям (способны различать разницу температуры крови в 0,011 °С). Отношение холодо- и теплочувствительных нейронов в гипоталамусе составляет 1:6, поэтому центральные терморецепторы преимущественно активируются при повышении температуры «ядра» тела человека. На основе анализа и интеграции информации о значении температуры крови и периферических тканей, в преоптической области гипоталамуса непрерывно определяется среднее (интегральное) значение температуры тела. Эти данные передаются через вставочные нейроны в группу нейронов переднего отдела гипоталамуса, задающих в организме определенный уровень температуры тела — «установочную точку» терморегуляции. На основе анализа и сравнений значений средней температуры тела и заданной величины температуры, подлежащей регулированию, механизмы «установочной точки» через эффекторные нейроны заднего гипоталамуса воздействуют на процессы теплоотдачи или теплопродукции, чтобы привести в соответствие фактическую и заданную температуру. Таким образом, за счет функции центра терморегуляции устанавливается равновесие между теплопродукцией и теплоотдачей, позволяющее поддерживать температуру тела в оптимальных для жизнедеятельности организма пределах (рис. 13.6). Рис. 13.6. Схема механизмов регуляции теплообмена в организме человека. Поддержание относительного постоянства температуры тела достигается с помощью баланса между количеством продуцируемого в единицу времени тепла в организме человека и количеством тепла, которое организм отдает за то же время в окружающую среду. Тепловой баланс регулируется нейрогуморальными механизмами, которые активируются в результате изменения импульсной активности эффекторных нейронов терморегуляторного центра гипоталамуса. В гипоталамический терморегуляторный центр поступает афферентная информация об изменениях внешней температуры от периферических терморецепторов и об изменения температуры «ядра» — от центральных терморецепторов (пояснения в тексте). В механизме формирования
    «установочной точки» имеет значение уровень спонтанной активности вставочных нейронов гипоталамуса. Например, если уровень спонтанной активности интернейрона является высоким, то для усиления термогенеза требуется более высокая активность кожных Холодовых рецепторов, а значение пороговой температуры для регулируемой
    теплопродукции является более низким. И наоборот, если вставочный нейрон проявляет низкую спонтанную активность, то даже незначительная афферентация от кожных
    Холодовых рецепторов может оказаться достаточной для запуска дополнительного теплообразования в организме. Уровень спонтанной активности вставочных нейронов зависит от соотношения концентрации ионов натрия и кальция в гипоталамусе и некоторых других нетемпературных факторов.
    Стадия подъёма температуры тела Стадия подъёма температуры тела (стадия I, st. increment!) характеризуется накоплением в организме дополнительного количества тепла за счёт преобладания теплопродукции над теплоотдачей. • Пирогенные цитокины, синтезированные лейкоцитами, из крови проникают через гематоэнцефалический барьер и в преоптической зоне переднего гипоталамуса взаимодействуют с рецепторами нервных клеток центра терморегуляции. В результате активируется мембраносвязанная фосфолипаза А2 и включается метаболический каскад арахидоновой кислоты. • В нейронах центра терморегуляции значительно повышается активность циклооксигеназы.
    Результатом этого является увеличение концентрации в нейронах ПгЕ2. • Образование
    ПгЕ2 — одно из ключевых звеньев развития лихорадки. Аргументом этому является факт предотвращения синтеза ПгЕ2 и как следствие — развития лихорадочной реакции при подавлении активности циклооксигеназы нестероидными противовоспалительными средствами (НПВС, например, аспирином, диклофенаком натрия и т.д.). • ПгЕ2 активирует аденилатциклазу, катализирующую образование в нейронах циклического
    3',5'-аденозинмонофосфата (цАМФ). Это, в свою очередь, повышает активность цАМФ- зависимых протеинкиназ и других ферментов. • Развивающееся в связи с этим изменение обмена веществ в нейронах приводит к снижению порога возбудимости холодовых рецепторов (т.е. к повышению их чувствительности). • Благодаря этому нормальная температура крови воспринимается как пониженная: импульсация холодочувствительных нейронов в адрес эффекторных нейронов заднего гипоталамуса значительно возрастает. В связи с этим так называемая температурная установочная точка центра теплорегуляции повышается. Немаловажное значение в поддержании нормальной температуры организма, является обеспечение тепла в помещении. К примеру, красивая плитка для ванной может украсить ваше помещение, но при этом вы должны обеспечить согревание пола, для поддержания нормальной температуры тела Описанные выше изменения являются центральным звеном механизма развития стадии I лихорадки. Позднее присоединяются и периферические механизмы. С момента сдвига «установочной точки» эффективность механизмов теплопродукции доминирует над эффективностью процессов теплоотдачи.
    4 вопрос
    Гипоксия — состояние кислородного голодания как всего организма в целом, так и отдельных органов и тканей, вызванное различными факторами: задержкой дыхания, болезненными состояниями, малым содержанием кислорода в атмосфере. Причин возникновения гипоксии великое множество. Кислородная недостаточность может развиваться в организме при действии экстремальных факторов, таких, как гравитационные перегрузки, высокая температура среды, гиподинамия, а также при различных патологических процессах (шок, инфаркт миокарда, ишемическая болезнь сердца, бронхиальная астма, черепно–мозговая травма, сахарный диабет).
    Классификация гипоксии
    По этиологии:

    Гипоксическая (экзогенная) — при снижении парциального давления кислорода во вдыхаемом воздухе (низкое атмосферное давление или закрытые помещения);

    Дыхательная (респираторная) — при нарушении транспорта кислорода из атмосферы в кровь (дыхательная недостаточность);


    Гемическая (кровяная) — при снижении кислородной емкости крови (анемия; инактивация гемоглобина угарным газом или окислителями);

    Циркуляторная — при недостаточности кровообращения (сердца либо сосудов), сопровождается снижением артериовенозной разницы по кислороду;

    Тканевая (гистотоксическая) — при нарушении использования кислорода тканями
    (пример: цианиды блокируют цитохромоксидазу — фермент дыхательной цепи митохондрий);

    Перегрузочная - вследствие чрезмерной функциональной нагрузки на орган или ткань (в мышцах при тяжелой работе, в нервной ткани во время эпилептического приступа);

    Смешанная — любая тяжелая/длительная гипоксия приобретает тканевой компонент (гипоксия > ацидоз > блокада гликолиза > отсутствие субстрата для окисления > блокада окисления > тканевая гипоксия).
    По распространенности (только для циркуляторной):

    Общая

    Местная
    По скорости развития:

    Молниеносная

    Острая

    Подострая

    Хроническая
    Билет 4
    1.Механизмы расширения сосудов в работающем органе.
    2.Классификация патогенных факторов.
    3.Роль различных отделов нервной системы в развитии лихорадки.
    4.Патогенетические варианты внеклеточных видов ангиоспазма на примере коронароспазма.
    1 вопрос
    Местные механизмы регуляции кровообращения
    При усиленной функции любого органа возрастает интенсивность процессов метаболизма и повышается концентрация продуктов обмена — двуокиси углерода и угольной кислоты, аденозиндифосфата, аденозинмонофосфата, фосфорной и молочной кислот и других веществ. Увеличивается осмотическое давление (вследствие появления значительного количества низкомолекулярных продуктов), уменьшается величина рН в результате накопления водородных ионов. Все это и ряд других факторов приводят к расширению сосудов в работающем органе. Гладкая мускулатура сосудистой стенки очень чувствительна к действию этих продуктов обмена. Попадая в общий кровоток и достигая с током крови сосудодвигательного центра, многие из этих веществ повышают тонус сосудодвигательного центра, т. е. оказывают на сосуды противоположное влияние...
    Гуморальные влияния на сосуды
    Некоторые гуморальные агенты суживают, а другие расширяют просвет артериальных сосудов. К сосудосуживающим веществам относятся адреналин, норадреналин, вазопрессин. К числу гуморальных сосудосуживающих агентов относится также серотонин (5-гидроокситриптамин), продуцируемый в слизистой оболочке кишечника и в некоторых участках головного мозга. Серотонин образуется также при распаде кровяных пластинок. Особое сосудосуживающее вещество — ренин — образуется в почках. После частичного сдавливания почечных артерий у животных возникает стойкое повышение
    АД, обусловленное сужением артериол. Ренин представляет собой протеолитический
    фермент, сам по себе не вызывающий сужения сосудов. Поступая в кровь, ренин расщепляет α2-глобулин плазмы — ангиотензиноген и превращает...
    Брадикинин и гистамин
    В настоящее время установлено образование во многих тканях тела ряда сосудорасширяющих веществ — простагландинов, представляющих собой производные ненасыщенных жирных кислот. Из подчелюстной, поджелудочной желез, из легких и некоторых других органов получен сосудорасширяющий полипептид — брадикинин. Он вызывает расслабление гладкой мускулатуры артериол и понижает уровень АД.
    Брадикинин появляется в коже при действии тепла и является одним из факторов, обусловливающих расширение сосудов при нагревании. Он образуется при расщеплении одного из глобулинов плазмы крови под влиянием находящегося в тканях фермента калликреина. Сосудорасширяющим веществом является также гистамин, образующийся в стенке желудка и кишечника, а также во многих других органах, в частности в коже при ее...
    Сосудодвигательный центр
    Сосудодвигательный центр локализован в продолговатом мозге и состоит из двух отделов
    — прессорного и депрессорного. Считают, что депрессорный отдел вызывает расширение сосудов, понижая тонус прессорного отдела и снижая, таким образом, эффект сосудосуживающих нервов. Влияния, идущие от сосудосуживающего центра продолговатого мозга, приходят к нервным центрам симпатической части вегетативной нервной системы (расположенным в боковых рогах грудных сегментов спинного мозга), регулирующим тонус сосудов отдельных участков тела. Кроме сосудодвигательных центров продолговатого и спинного мозга, на состояние сосудов оказывают влияние нервные центры промежуточного мозга и полушарий большого мозга. «Превентивная кардиология»,под редакцией Г.И.Косицкого...
    2 вопрос
    1. Потенциальные патогенные факторы: а) механические, б) физические, в) химические, г) биологические, д) психогенные, е) генетические.
    2. Безусловные патогенные факторы.
    Классификация П.Д. Горизонтова
    Тип раздражителя
    Состояние
    реактивности
    организма
    Тип ответной реакции
    организма
    Патогенный
    Изменена или не изменена
    Безусловнорефлекторный "Индифферентный" Изменена
    Безусловнорефлекторный "Индифферентный" Изменена
    Условнорефлекторный
    Психогенный
    Изменена или не изменена
    Нарушение высшей нервной деятельности или функции внутренних органов
    Под условиями понимают обстоятельства или воздействия, сами по себе не способные вызвать данное заболевание, но ослабляющие, усиливающие или модифицирующие действие патогенных факторов.
    Условия делят на несколько групп.
    1. Условия, влияющие на реактивность организма (благоприятные и неблагоприятные).
    2. Условия, влияющие на причину болезни (благоприятные и неблагоприятные).

    3 вопрос
    Роль центральной нервной системы в развитии лихорадки
    Кора головного мозга и подкорковые центры. Развитие лихорадочной реакции тесно связано с функциональным состоянием коры головного мозга и подкорковых центров терморегуляции.
    В классическом эксперименте с тепловым уколом в область серого бугра было доказано участие центральной нервной системы в повышении температуры.
    В экспериментальных условиях удается вызвать условнорефлекторную лихорадку у собак. Лихорадка возникает на индифферентный сигнал после 10-кратного его сочетания с введением бактериальной культуры.
    Температура тела у человека может повыситься под влиянием гипноза, при психических заболеваниях, истерии. Описаны случаи кратковременного повышения температуры у ораторов, артистов, экзаменующихся студентов. Перечисленные примеры указывают на то, что смещение постоянного температурного уровня организма выше нормы возможно и за счет чисто нервных влияний на центр терморегуляции без воздействия пирогенов. Механизм подобных лихорадок пока не выяснен.
    Фармакологические препараты, изменяющие соотношение возбудительного и тормозного процессов в коре головного мозга, влияют на характер лихорадочной реакции. Например, после введения животному кофеина, фенамина или тиреоидина температурная реакция на пирогенные вещества становится более выраженной. После введения бромида натрия температура при тех же условиях повышается незначительно.
    У животных, лишенных коры, таламуса и полосатого тела, сохраняется теплорегуляция и способность лихорадить. Например, у собак с двусторонней декортикацией лихорадка протекает даже с большим подъемом температуры, чем у интактных животных. По-видимому, при декортикации устраняется тормозящее влияние коры на нижележащие центры.
    При глубоком эфирном наркозе в условиях угнетения подкорковых центров лихорадка резко подавляется.
    Гипоталамус. Область гипоталамуса является главным автоматическим центром терморегуляции, которая осуществляется при комплексном участии ядер переднего, среднего и заднего гипоталамуса. Установлено, что
    термочувствительные
    нейроны
    («холодовые» и
    «тепловые») сосредоточены преимущественно в
    преоптической области переднего гипоталамуса
    . Локальное нагревание или охлаждение этой области сопровождается такими же изменениями теплопродукции и теплоотдачи, которые возникают при общем действии тепла или холода на организм животного.
    Термочувствительные нейроны преоптической области избирательно чувствительны к лейкоцитарному пирогену, что было показано в опытах с прямым его введением в ткань переднего гипоталамуса или в ликворную систему головного мозга.
    Пирогены увеличивают возбудимость Холодовых и уменьшают возбудимость тепловых термочувствительных нейронов, что и лежит в основе изменения уровня регулирования температурного гомеостаза и формирования лихорадочной реакции
    (см.
    § 140
    );
    Полное разрушение гипоталамуса или перерезка ствола мозга ниже гипоталамуса превращает гомойотермных животных в пойкилотермных: они утрачивают терморегуляцию и способность лихорадить (рис. 20).
    Спинной мозг. рис. 19
    ).Травматические повреждения спинного мозга могут сопровождаться нарушением терморегуляции, что обусловлено главным образом
    выпадением эффекторных механизмов поддерживания температурного гомеостаза. Так при высокой перерезке спинного мозга в шейном отделе животное утрачивает терморегуляцию и не может лихорадить. Только спустя несколько дней устанавливается относительная гомойотермия, по-видимому, за счет функционирования термочувствительных нейронов, расположенных в нижних шейных и верхних грудных сегментах (Хензель Г., 1973). У таких животных можно вызвать экспериментальную лихорадку, но она протекает в ослабленной форме. При более низком уровне перерезки спинного мозга (в грудном или поясничном отделах) терморегуляция восстанавливается после выхода из состояния спинального шока, и экспериментальные животные отвечают лихорадочной реакцией на введение пирогенов.
    Нервные рецепторы. На термочувствительные периферические рецепторы пирогены не действуют. Адекватные (холодовые и тепловые) раздражения терморецепторов лихорадку не вызывают. Неспецифические (механические, химические) раздражения нетермочувствительных рецепторов в отдельных рефлексогенных зонах могут по-разному влиять на температуру тела и развитие лихорадки. Например, раздражение брюшины частицами пемзы, скипидаром или инъекция раздражающих веществ (в том числе и экзопирогенов) в корковую ткань почки вызывают быстрое падение температуры тела на
    0,5—1,0°С и более и задерживают на известное время развитие лихорадки при введении пирогенов в кровь (Веселкин П. Н., 1966, и др.). Однако при бужировании уретры, при острых приступах желчнокаменной и почечнокаменной болезни описано возникновение типичных лихорадочных приступов с быстрым подъемом температуры и потрясающим ознобом. В свое время С. П. Боткин считал их рефлекторными. Сейчас их склонны объяснять образованием лейкоцитарного пирогена на почве повреждения в подобных случаях слизистых оболочек и развития элементов воспаления.
    Возможно, что рефлексы с этих зон одновременно повышают чувствительность центров к пирогенам. В эксперименте показано, что введение экзопирогенов в зону повышенной кожной чувствительности усиливает, тогда как введение их в деафферентированную кожу задерживает развитие лихорадки.
    4 вопрос
    Ангиоспастическая ишемия возникает вследствие раздражения сосудосуживающего аппарата сосудов и их рефлекторного спазма, вызванного эмоциональным воздействием
    (страх, боль, гнев), физическими факторами (холод, травма, механическое раздражение), химическими агентами, биологическими раздражителями (токсины бактерий) и т.д.
    В условиях патологии ангиоспазм характеризуется относительной продолжительностью и значительной выраженностью, что может быть причиной резкого замедления кровотока, вплоть до полной его остановки.
    Выделяют следующие механизмы развития ангиоспазма:
    0 внеклеточный механизм, когда причиной нерасслабляющегося сокращения артерий являются вазоконстрикторные вещества (например, серотонин, катехоламины, некоторые простагландины), длительно циркулирующие в крови или синтезирующиеся в артериальной стенке;
    0 мембранный механизм, обусловленный нарушением процессов ре-поляризации плазматических мембран гладкомышечных клеток артерий.
    0 внутриклеточный механизм, когда нерасслабляющееся сокращение гладкомышечных клеток вызывается нарушением внутриклеточного переноса ионов
    кальция (удаление их из цитоплазмы) или же изменениями в механизме сократительных белков — актина и миозина.
    1   2   3   4   5   6   7   8   9   ...   13


    написать администратору сайта