153. Комплекс Гольжди. Строение. Функция. Комплекс Гольджи
Скачать 0.78 Mb.
|
ПЦР используется во многих областях для проведения анализов и в научных экспериментах.Установление отцовстваРис. 3: Результаты электрофореза ДНК-фрагментов, амплифицированных с помощью ПЦР. (1) Отец. (2) Ребёнок. (3) Мать. Ребёнок унаследовал некоторые особенности генетического отпечатка обоих родителей, что дало новый, уникальный отпечаток. Хотя «генетические отпечатки пальцев» уникальны (за исключением случая однояйцевых близнецов), родственные связи все же можно установить, сделав несколько таких отпечатков (рис. 3). Тот же метод можно применить, слегка модифицировав его, для установления эволюционного родства среди организмов. Медицинская диагностикаПЦР дает возможность существенно ускорить и облегчить диагностику наследственных и вирусных заболеваний. Нужный ген амплифицируют с помощью ПЦР с использованием соответствующих праймеров, а затем секвенируют для определения мутаций. Вирусные инфекции можно обнаруживать сразу после заражения, за недели или месяцы до того, как проявятся симптомы заболевания. Персонализированная медицинаИногда лекарства оказываются токсичными или аллергенными для некоторых пациентов. Причины этого — отчасти в индивидуальных различиях в восприимчивости и метаболизме лекарств и их производных. Эти различия детерминируются на генетическом уровне. Например, у одного пациента определенный цитохром (белок печени, отвечающий за метаболизм чужеродных веществ) может быть более активен, у другого — менее. Для того, чтобы определить, какой разновидностью цитохрома обладает данный пациент, предложено проводить ПЦР-анализ перед применением лекарства.[источник не указан 2005 дней] Такой анализ называют предварительным генотипированием (англ. prospectivegenotyping). Клонирование геновКлонирование генов (не путать с клонированием организмов) — это процесс выделения генов и, в результатегенноинженерных манипуляций, получения большого количества продукта данного гена. ПЦР используется для того, чтобы амплифицировать ген, который затем вставляется в вектор — фрагмент ДНК, переносящий чужеродный ген в тот же самый или другой, удобный для выращивания, организм. В качестве векторов используют, например, плазмиды или вирусную ДНК. Вставку генов в чужеродный организм обычно используют для получения продукта этого гена — РНК или, чаще всего, белка. Таким образом в промышленных количествах получают многие белки для использования в сельском хозяйстве, медицине и др. Рис. 4: Клонирование гена с использованием плазмиды. (1) Хромосомная ДНК организма A. (2) ПЦР. (3) Множество копий гена организма А. (4) Вставка гена в плазмиду. (5) Плазмида с геном организма А. (6) Введение плазмиды в организм В. (7) Умножение количества копий гена организма А в организме В. Секвенирование ДНКВ методе секвенирования с использованием меченных флуоресцентной меткой или радиоактивным изотопомдидезоксинуклеотидов ПЦР является неотъемлемой частью, так как именно в ходе полимеризации в цепь ДНК встраиваются производные нуклеотидов, меченные флуоресцентной или радиоактивной меткой. Присоединение дидезоксинуклеотида к синтезируемой цепи приводит к обрыву синтеза, позволяя определить положение специфических нуклеотидов после разделения в геле. МутагенезВ настоящее время ПЦР стала основным методом проведения мутагенеза (внесения изменений в нуклеотидную последовательность ДНК). Использование ПЦР позволило упростить и ускорить процедуру проведения мутагенеза, а также сделать её более надёжной и воспроизводимой. 197. этапы ПЦР 1 этап (денатурация). Нагревание ДНК до 95 С, в результате чего двухцепочечные молекулы ДНК расплетаются с образованием двух одноцепочечных молекул. 2 этап (отжиг). Гибридизация праймеров при 55-60 С с комплементарными последовательностями на противоположных цепях ДНК (на левой и правой границах амплифицируемого фрагмента). Генспецифические праймеры создают при помощи компьютерных программ, использующих информацию о нуклеотидной последовательности известных генов микроорганизмов или генов человека, предоставленных на сайтах GenBank и EMBL 3 этап (элонгация). При температуре 68-72 С праймеры в присутствии ДНК-полимеразы и дезоксирибонуклеотидтрифосфатов служат затравками для синтеза комплементарной цепи на ДНК-матрице, начинающейся от места гибридизации праймера и происходящей в направлении 5’-3’. В последующих циклах вновь синтезируемые молекулы ДНК становятся, в свою очередь, матрицей для аналогичного синтеза новых копий. Поскольку синтез каждой из двух антипараллельных цепей ДНК начинается от места гибридизации праймера, эти места и становятся границами синтезируемого участка. По сути, метод ПЦР как бы «имитирует» на ограниченном участке гена естественный процесс репликации ДНК, происходящей in vito. 198.Метод FISH и его применение в медицине.(см вопрос 201) Флуоресце́нтная гибридиза́цияin situ, или метод FISH (англ. fluorescence in situ hybridization — FISH), — цитогенетический метод, который применяют для детекции и определения положения специфической последовательностиДНК на метафазных хромосомах или в интерфазных ядрах in situ. Кроме того, FISH используют для выявления специфических мРНК в образце ткани. В последнем случае метод FISH позволяет установить пространственно-временные особенности экспрессии генов в клетках и тканях. Метод FISH используют в преимплантационной, пренатальной и постнатальной генетической диагностике, в диагностике онкологических заболеваний[2], в ретроспективной биологической дозиметрии. Для женщин старшего репродуктивного возраста беременность может оказаться поводом не столько для радости, сколько для беспокойства. С возрастом женщины связан риск развития хромосомных аномалий плода. Амниоцентез, осуществляемый на 16-й неделе беременности, с последующим анализом кариотипа занимает 10-14 дней. Использование FISH в предварительном обследовании позволяет ускорить диагностику и уменьшить время ожидания. Большинство генетиков и лабораторий придерживаются мнения, что метод FISH не следует использовать изолированно для принятия решения о дальнейшем ведении беременности. Метод FISH обязательно следует дополнять кариотипическим анализом, и его результаты как минимум должны коррелировать с патологической картиной ультразвукового исследования (УЗИ) или биохимического скрининга по крови матери. Синдромы генных последовательностей известны также под названием синдромов микроделеции, или сегментарной анеусомии. Это делеции смежных фрагментов хромосомы, вовлекающие, как правило, многие гены. Синдромы генных последовательностей были впервые описаны в 1986 г. с использованием классических методик цитогенетики. Теперь, благодаря FISH, возможна идентификация субмикроскопических делеции на уровне ДНК, что позволило выявлять наименьший делецированный регион, связанный с развитием того или иного синдрома, получивший название критического региона. После определения критического региона для синдрома зачастую становится возможным идентифицировать специфические гены, отсутствие которых признают ассоциированным с этим синдромом. В недавно вышедшем руководстве по синдромам генных последовательностей сообщают о 18 синдромах делеции и микроделеции, ассоциированных с 14 хромосомами. 199. Значение внешней среды для формирования фенотипа. Фенотип — совокупность характеристик, присущих индивиду на определённой стадии развития, формирующихся на основе генотипа, опосредованного рядом факторов внешней среды. Генотип определяет норму реакции организма — границы изменчивости выражения признака под влиянием изменяющихся условий окружающей среды. Те различия, которые зависят только от условий среды, называются модификациями.Генотип последовательно реализуется в фенотип в ходе индивидуального развития организма и в определенных условиях среды обитания, факторы которой (колебания освещенности, температуры, влажности, условий питания, взаимоотношений с другими организмами и др.) часто оказывают определяющее значение на проявление и развитие того или иного признака и свойства. Поэтому организмы, имеющие одинаковые генотипы, могут заметно отличаться друг от друга по фенотипу. 200.РНК-интерференция. Биологическая роль этого процесса. РНК-интерференция — процесс подавления экспрессии генов у эукариот на стадии посттранскрипционном уровне, индуцированное короткими интерферирующими молекулами РНК. Процессы РНК-интерференции обнаружены в клетках многихэукариот: у животных, растений и грибов. Система РНК-интерференции играет важную роль в защите клеток от вирусов, паразитирующих генов (транспозонов), а также в регуляцииразвития, дифференцировки и экспрессии генов организма. Биологическая роль РНК-интерференции заключается в: - антивирусной защите(растения) -участии в регуляции процессов развития - ремоделировании хроматина - участие в процессе детерминации клеток. |