ответы на предмет. 2. Методы исследований на ионномолекулярном уровне, уровне элементарных частиц, микро и макроагрегатов
Скачать 114.89 Kb.
|
11. Физико-химические методы анализа: спектральные, электрохимические, хроматографические, термические. Сущность методов. Понятие об аналитических приборах. Типы аналитических приборов. Физико-химические методы анализа основаны на проведении реакций, конец которых определяется с помощью приборов, поэтому эти методы называются также инструментальными. Известно несколько десятков физико-химических методов анализа. Важнейшими физико-химическими методами анализа являются: 1) спектральные и другие оптические методы; 2) хроматографические методы; 3) электрохимические методы. 4) термические методы Наиболее обширной является группа спектральных и других оптических методов анализа, включающая методы эмиссионной спектроскопии, абсорбционной спектроскопии, люминесценции, рефрактометрии и др. Оптические методы используют связь между анализируемым веществом и его оптическими свойствами. Хроматография – это метод разделения сложных смесей, основанный на распределении веществ между двумя фазами, одна из которых неподвижна, а другая – поток, движущийся через неподвижную фазу. Хроматография основана на многократном повторении актов сорбции и десорбции веществ при их перемещении в потоке подвижной фазы вдоль неподвижного сорбента. Для хроматографического разделения смесей веществ может быть использован любой механизм сорбции. В группу хроматографических методов анализа входят методы газовой и газожидкостной хроматографии, жидкостной распределительной хроматографии и др. Электрохимические методы анализа основаны на существовании зависимости между составом анализируемого вещества и его электрохимическими свойствами. Электрохимические методы анализа, основанные на измерении электрической проводимости, потенциалов и других свойств, включают методы кондуктометрии, потенциометрии, полярографии, кулонометрии и др. Кроме перечисленных физико-химических методов существуют и другие методы инструментального анализа. Масс-спектрометрические методы основаны на определении масс ионизированных атомов, молекул после их разделения в результате комбинированного действия электрических и магнитных полей. Масс-спектрометр разделяет с помощью электрических и магнитных полей пучки заряженных частиц (обычно ионов) с разным отношением массы частицы т к ее заряду е. Метод электронного парамагнитного резонанса (ЭПР) основан на явлении резонансного поглощения некоторыми атомами, молекулами или радикалами энергии переменного электромагнитного поля радиочастотного диапазона. Метод ядерного магнитного резонанса (ЯМР) использует явление резонансного поглощения энергии переменного электромагнитного поля радиочастотного диапазона веществом, находящимся в постоянном магнитном поле, обусловленное магнетизмом атомных ядер. ЯМР основан на существовании у атомного ядра магнитного момента. ЯМР по своей природе подобен ЭПР. Радиометрические методы основаны на использовании радиоактивных изотопов и измерении радиоактивного излучения. Термическими методами называется группа методов физико-химического анализа, в которых измеряется какой-либо физический параметр системы в зависимости от температуры. Калориметрия и термогравиметрия относятся к термическим методам анализа. В термогравиметрии измеряемым параметром является масса вещества, в калориметрии – теплота. Дифференциальный термический анализ (ДТА) основан на регистрации разности температур исследуемого вещества и инертного образца сравнения при их одновременном нагревании или охлаждении. При изменении температуры в образце могут протекать процессы с изменением энтальпии, как например, плавление, перестройка кристаллической структуры, испарение, реакции дегидротации, диссоциации или разложения, окисление или восстановление. Такие превращения сопровождаются поглощением или выделением тепла, благодаря чему температура образца и эталона начинают различаться. Повышенная чувствительность дифференциального метода позволяет исследовать образцы малого веса (до нескольких мг). Аналитическое оборудование используется во всех исследованиях независимо от их направленности. Это оборудование включает в себя приборы, которые позволяют качественно и количественно определить и охарактеризовать состав любого исследуемого вещества. Путем использования аналитического оборудования можно идентифицировать компоненты исследуемого образца, а также определить количество и концентрацию составляющих. При помощи специального оборудования исследованию могут подвергаться неорганические и органические вещества любой плотности, независимо от их молекулярного состава. Современное аналитическое оборудование в большинстве своем является автоматизированным, что позволяет существенно ускорить и упростить процесс проведения исследований различного рода. Автоматические системы позволяют также повысить качество и эффективность проведения любых работ, связанных с лабораторией. Использование новых приборов сводит к минимуму человеческий фактор, позволяет быстро, точно и надежно контролировать управление и проведение технологического процесса любой сложности, а также дает возможность работать в полевых и промышленных условиях. По типу метода анализа, используемого в работе, выделяют следующие виды аналитических приборов: 1) Оборудование для гравиметрии. 2) Оборудование для титрометрии, для проведения химических методов анализа. 3) Приборы для хроматографии. 4) Для электрохимии. 5) Для фотометрии – приборы для физико-химического анализа. 6) Оборудование для спектроскопии – приборы для физического анализа. 12. Сущность фотометрии. Использование пламенной фотометрии в агрономических исследованиях. Основные приборы. Достоинства и недостатки метода. Фотометрия представляет собой метод количественного анализа, особенно для определения микроколичеств веществ. Метод дает возможность определить концентрацию вещества в растворе в тех случаях, когда вещество имеет собственную окраску либо приобретает окраску путем воздействия на него соответствующего химического реагента. Сущность фотометрического анализа заключается в следующем: определяют уменьшение интенсивности потока монохроматического света (т.е. света с определенной, возможно узкой областью спектра) после прохождения его через определенной толщины слой окрашенного раствора и, учтя законы светопоглощения, делают вывод о концентрации растворенного вещества. Основной закон светопоглощения Бугера-Ламберта-Бера определяет зависимость между поглощением излучения раствором и концентрацией в нем поглощаемого вещества. Основными фотометрическими методами являются колориметрия, фотоэлектроколориметрия и спектрофотометрия. Фотометрическое (колориметрическое) определение окрашенных веществ основано на сравнении окраски или светопоглощения исследуемого раствора и стандартного для которого известно содержание определяемого вещества. Различают колориметрию визуальную - субъективную и фотоэлектрическую - объективную. В первом случае концентрацию вещества в растворе измеряют визуально при помощи компараторов, колориметров сливания, концентрационных колориметров (КОЛ-1М), универсального фотометра ФМ-56 и др. Основным недостатком визуальной колориметрии является малая точность (5-10 относительных процентов). Визуальные методы колориметрических определений являются субъективными; точность их зависит от индивидуальных особенностей зрения наблюдателя. Применение фотоэлектрической колориметрии позволяет при помощи фотоэлементов, заменяющих глаз человека, избежать некоторых ошибок субъективной оценки при исследовании. Принцип фотоэлектроколориметрии состоит в том, что фотоэлементы под действием света дают электрический ток, интенсивность которого пропорциональна силе света. Если между источником света и фотоэлементом поместить светопоглощающую среду (например, окрашенный раствор), то сила фототока уменьшится в зависимости от интенсивности окраски раствора. Составив эмпирический график, в котором дана зависимость между интенсивностью фототока и концентрацией вещества в растворе, можно в каждом отдельном случае по интенсивности полученного фототока сделать заключение о концентрации вещества в растворе. Приборы, которые используются для этой цели, носят название фотоэлектрических колориметров (ФЭКов). Современные фотоколориметры ФЭК-М, ФЭК-Н-52,54,57, ФЭК-56 являются двухлучевыми приборами с двумя фотоэлементами и имеют одинаковые принципиальные схемы. Пламенная фотометрия - оптический метод количественного элементного анализа по атомным спектрам испускания. Для получения спектров анализируемое вещество переводят в атомный пар в пламени. Термическая пламенная фотометрия - разновидность атомного эмиссионного спектрального анализа. В этом методе анализируемый раствор в виде аэрозоля вводят в пламя горючей смеси воздуха или N2O с углеводородами (пропаном, бутаном, ацетиленом). При этом растворитель и соли определяемых металлов испаряются и диссоциируют на своб. атомы. Атомы металлов и образовавшиеся в ряде случаев молекулы их оксидов и гидроксидов возбуждаются и излучают световую энергию. Из всего спектра испускания выделяют характерную для определяемого элемента аналит. линию (с помощью светофильтра или монохроматора) и фотоэлектрически измеряют ее интенсивность, которая служит мерой концентрации данного элемента. С помощью пламенных фотометров метод пламенной фотометрии применяют для определения щелочных, щелочноземельных, а также некоторых других металлов, напр. Ga, In, Tl, Pb, Mn, в том числе и в почвенных и водных растворах. Пределы обнаружения щелочных металлов составляют 0,1-0,001 мкг/мл, остальных - 0,1-5 мкг/мл; относит, стандартное отклонение 0,02-0,04. Основное достоинство метода – простота и скорость проведения, малые трудозатраты. Главный минус – помехи, связанные главным образом с нарушением поступления элемента в пламя вследствие образования труднолетучих соединений и смещением равновесия ионизации металлов в пламени. Помехи устраняют выбором подходящих растворов сравнения, буферных растворов, добавлением спец. реактивов, препятствующих образованию труднолетучих соединений и др. 13. Атомно-абсорбционный спектральный анализ. Сущность метода, достоинство и недостатки с позиции агрономических исследований. Атомно-абсорбционная спектрометрия (ААС) — распространённый в аналитической химии инструментальный метод количественного элементного анализа (современные методики атомно-абсорбционного определения позволяют определить содержание почти 70 элементов Периодической системы) по атомным спектрам поглощения (абсорбции) для определения содержания металлов в растворах их солей: в природных и сточных водах, в растворах-минерализатах, технологических и прочих растворах. Приборы для атомно-абсорбционного анализа — атомно-абсорбционные спектрометры. Они представляют собой прецизионные высокоавтоматизированные устройства, которые обеспечивают воспроизводимость условий измерений, автоматическое введение проб и регистрацию результатов измерения. Основными элементами данного устройства являются: источник света, излучающий характерную узкую спектральную линию анализируемого вещества; атомизатор для перевода данного вещества в атомный пар; спектральный прибор для выделения характерной аналитической линии вещества и электронная система, необходимая для детектирования, усиления и обработки аналитического сигнала поглощения. Определение содержания элемента в пробе проводят с использованием экспериментально установленной функциональной зависимости (градуировочной функции) между аналитическим сигналом (абсорбция, оптическая плотность) и концентрацией элемента в образце сравнения. Градуировочная функция может представлять собой либо математическую формулу, либо график. Атомно-абсорбционный метод анализа основан на поглощении излучения оптического диапазона свободными атомами. В связи с тем, что в оптическом диапазоне, соответствующем энергиям валентных электронов, свободные атомы и многоатомные частицы дают различные спектры. Поэтому важнейшей предпосылкой АА определений является перевод определяемого вещества в атомный пар. Для этого используется источник высокой температуры — атомизатор. Существуют два основным метода атомизации, широко применяемых на практике: 1) пламенный. 2) электротермический (непламенный). Пламенная атомизация характеризуется тем, что источником высокой температуры служит пламя. Атомизатор представляет собой горелку, в которую непрерывно подаются горючие газы в смеси с окислителями. В атомизатор с помощью форсунки-распылителя подаётся анализируемый раствор. Наиболее распространёнными в атомной абсорбции являются следующие составы смесей: 1) светильный газ—воздух: пламя с температурой в интервале 1500—1800 °С; 2) ацетилен—воздух: пламя с температурой до 2200—2300 °С (зависит от соотношения потоков ацетилен—воздух); 3) ацетилен—закись азота: высокотемпературное пламя (до 2900 °С). Воздушно-ацетиленовое пламя применяют для определения щелочных и щелочноземельных металлов, а также Cr, Fe, Со, Ni, Mg, Mo, Sr и благородных металлов. Такое пламя обладает высокой прозрачностью в области длин волн более 200 нм, слабой собственной эмиссией и обеспечивает высокую эффективность атомизации более 30 элементов. Частично ионизируются в нём только щелочные металлы. Метод электротермической атомизации был разработан Борисом Львовым, который в 1959 году сконструировал первый непламенный атомизатор — графитовую кювету, а в 1961 году опубликовал данные о её аналитических возможностях. Данный метод характеризуется тем, что атомизатором служит графитовая печь (трубка, длиной 50 мм и внутренним диаметром 4—5 мм), которая нагревается электрическим током большой силы. Анализируемое вещество вводится на торец графитового электрода, который после высушивания нанесённой капли подаётся в предварительно нагретую графитовую печь через коническое отверстие в её стенке. В момент соприкосновения электрода с трубкой происходит дополнительный разогрев электрода мощным дуговым разрядом, зажигаемым между внешним концом введённого в печь электрода с пробой и вспомогательным электродом. В итоге внутри печи происходит эффективная атомизация вещества. 14. Электрохимические методы. Электрохимические методы анализа — группа методов количественного химического анализа, основанные на использовании электролиза. Разновидностями метода являются электрогравиметрический анализ (электроанализ), внутренний электролиз, контактный обмен металлов (цементация), полярографический анализ, кулонометрия и др. В частности, электрогравиметрический анализ основан на взвешивании вещества, выделяющемся на одном из электродов. Метод позволяет не только проводить количественные определения меди, никеля, свинца и др., но и разделять смеси веществ. Кроме того, к электрохимическим методам анализа относят методы, основанные на измерении электропроводности (кондуктометрия) или потенциала электрода (потенциометрия). Некоторые электрохимические методы применяются для нахождения конечной точки титрования (амперометрическое титрование, кондуктометрическое титрование, потенциометрическое титрование, кулонометрическое титрование). ФХМА основаны на связи состава системы и ее физических и физико-химических свойств, которые могут быть измерены с помощью электрических приборов. В связи с этим ФХМА иногда называют инструментальными методами. Использование ФХМА позволяет оптимизировать анализ, исключив из приведенной выше схемы ряд стадий. Например, аналитический сигнал может быть получен непосредственно от объекта анализа; аналитический сигнал может быть использован на стадии проведения аналитической реакции; аналитический сигнал от объекта анализа может быть сразу преобразован в электрический и использован в системе автоматического управления. По сравнению с химическими методами, например, объемным химическим анализом, эти методы обладают целым рядом существенных преимуществ, к которым относятся: 1) малые затраты времени на проведение анализа за счет исключения ряда этапов (например, отбор и подготовку пробы при получении аналитического сигнала непосредственно от объекта анализа); 2) меньшая трудоемкость также за счет исключения ряда этапов анализа; 3) возможность автоматизации; 4) исключение субъективных ошибок; 5) высокая чувствительность анализа Электрохимические методы анализа делятся на пять основных групп: потенциометрию, вольтамперометрию, кулонометрию, кондуктометрию и диэлектрометрию. Потенциометрия объединяет методы, основанные на измерении эдс обратимых электрохимических цепей, когда потенциал рабочего электрода близок к равновесному значению (см. Электродный потенциал). Потенциометрия включает редоксметрию (см. Оксидиметрия), ионометрию и потенциометрическое титрование. Вольтамперометрия основана на исследовании зависимости тока поляризации от напряжения, прикладываемого к электрохимической ячейке, когда потенциал рабочего электрода значительно отличается от равновесного значения (см. Поляризация электрохимическая). По разнообразию методов вольтамперометрия — самая многочисленная группа из всех электрохимических методов анализа, широко используемая для определения веществ в растворах и расплавах (например, полярография, амперометрия). Кулонометрия объединяет методы анализа, основанные на измерении количества вещества, выделяющегося на электроде в процессе электрохимической реакции в соответствии с Фарадея законами. При кулонометрии потенциал рабочего электрода отличается от равновесного значения. Различают потенциостатическую и гальваностатическую кулонометрию, причём последняя включает прямой и инверсионный методы, электроанализ и кулонометрическое титрование. К кондуктометрии относятся методы, в которых измеряют электропроводность электролитов (водных и неводных растворов, коллоидных систем, расплавов, твёрдых веществ). Кондуктометрический анализ основан на изменении концентрации вещества или химического состава среды в межэлектродном пространстве; он не связан с потенциалом электрода, который обычно близок к равновесному значению. Кондуктометрия включает прямые методы анализа (используемые, например, в солемерах) и косвенные (например, в газовом анализе) с применением постоянного или переменного тока (низкой и высокой частоты), а также хронокондуктометрию, низкочастотное и высокочастотное титрование. Диэлектрометрия объединяет методы анализа, основанные на измерении диэлектрической проницаемости вещества, обусловленной ориентацией в электрическом поле частиц (молекул, ионов), обладающих дипольным моментом. Методы диэлектрометрии применяют для контроля чистоты диэлектриков, например для определения малых количеств влаги. Диэлектрометрическое титрование используют для анализа растворов. |