А. Левенгука, Л. Пастера, Р. Коха. 2 Открытия Открытия А. Левенгука, Л. Пастера, Р. Коха, И. Мечникова, п эрлиха
Скачать 6.07 Mb.
|
1 Материал составлен by zOrg, для экзамена по микробиологии ИвГМА 2015 год 1) Предмет и задачи медицинской микробиологии, вирусологии, иммунологии. Открытия А. Левенгука, Л. Пастера, Р. Коха. 2) Открытия Открытия А. Левенгука, Л. Пастера, Р. Коха, И. Мечникова, П Эрлиха. Значение микробиологии в подготовке врача. Микробиология ( от греч. micros- малый, bios- жизнь, logos- учение, т.е. учение о малых формах жизни) - наука, изучающая организмы, неразличимые (невидимые) невооруженным какой- либо оптикой глазом, которые за свои микроскопические размеры называют микроорганизмы (микробы). Предметом изучения микробиологии является их морфология, физиология, генетика, систематика, экология и взаимоотношения с другими формами жизни. В таксономическом отношении микроорганизмы очень разнообразны. Они включают прионы, вирусы, бактерии, водоросли, грибы, простейшие и даже микроскопические многоклеточные животные. По наличию и строению клеток вся живая природа может быть разделена на прокариоты (не имеющие истинного ядра), эукариоты (имеющие ядро) и не имеющие клеточного строения формы жизни. Последние для своего существования нуждаются в клетках, т.е. являются внутриклеточными формами жизни (рис.1). По уровню организации геномов, наличию и составу белоксинтезирующих систем и клеточной стенки все живое делят на 4 царства жизни: эукариоты, эубактерии, архебактерии, вирусы и плазмиды. К прокариотам, объединяющим эубактерии и архебактерии, относят бактерии, низшие (сине- зеленые) водоросли, спирохеты, актиномицеты, архебактерии, риккетсии, хламидии, микоплазмы. Простейшие, дрожжи и нитчатые грибы- эукариоты. 3. Задачи медицинской микробиологии. К ним можно отнести следующие: 1.Установление этиологической (причинной) роли микроорганизмов в норме и патологии. 2.Разработка методов диагностики, специфической профилактики и лечения инфекционных заболеваний, индикации (выявления) и идентификации (определения) возбудителей. 3. Бактериологический и вирусологический контроль окружающей среды, продуктов питания, соблюдения режима стерилизации и надзор за источниками инфекции в лечебных и детских учреждениях. 4.Контроль за чувствительностью микроорганизмов к антибиотикам и другим лечебным препаратам, состоянием микробиоценозов (микрофлорой) повехностей и полостей тела человека. 2. Основные этапы развития микробиологии, вирусологии и иммунологии К ним можно отнести следующие: 1.Эмпирических знаний ( до изобретения микроскопов и их применения для изучения микромира). Дж.Фракасторо (1546г.) предположил живую природу агентов инфекционных заболеваний- contagium vivum. 2.Морфологический период занял около двухсот лет. Антони ван Левенгук в 1675г. впервые описал простейших, в 1683г.- основные формы бактерий. Несовершенство приборов ( максимальное увеличение микроскопов X300) и методов изучения микромира не способствовало быстрому накоплению научных знаний о микроорганизмах. 3.Физиологический период (с 1875г.)- эпоха Л.Пастера и Р.Коха. Л.Пастер- изучение микробиологических основ процессов брожения и гниения, развитие промышленной микробиологии, выяснение роли микроорганизмов в кругообороте веществ в природе, открытие анаэробных микроорганизмов, разработка принципов асептики, методов стерилизации, ослабления (аттенуации) вирулентности и получения вакцин (вакцинных штаммов). Р.Кох- метод выделения чистых культур на твердых питательных средах, способы окраски бактерий анилиновыми красителями, открытие возбудителей сибирской язвы, холеры (запятой Коха), туберкулеза (палочки Коха), совершенствованиетехники микроскопии. Экспериментальное обоснование критериев Хенле, известные как постулаты (триада) Хенле- Коха. 4.Иммунологический период. И.И.Мечников- “поэт микробиологии” по образному определению Эмиля Ру. Он создал новую эпоху в микробиологии - учение о невосприимчивости (иммунитете), разработав теорию фагоцитоза и обосновав клеточную теорию иммунитета. Одновременно накапливались данные о выработке в организме антител против бактерий и их токсинов, позволившие П.Эрлиху разработать гуморальную теорию иммунитета. В последующей многолетней и плодотворной дискуссии между сторонниками фагоцитарной и гуморальной теорий были раскрыты многие механизмы иммунитета и родилась наука иммунология. В дальнейшем было установлено, что наследственный и приобретенный иммунитет зависит от согласованной деятельности пяти основных систем : макрофагов, комплемента, Т- и В- лимфоцитов, интерферонов, главной системы гистосовместимости, обеспечивающих различные формы иммунного ответа. И.И.Мечникову и П.Эрлиху в 1908г. была присуждена Нобелевская премия. 12 февраля 1892г. на заседании Российской академии наук Д.И.Ивановский сообщил, что возбудителем мозаичной болезни табака является фильтрующийся вирус. Эту дату можно считать днем рождения вирусологии, а Д.И.Ивановского ее основоположником. Впоследствии оказалось, что вирусы вызывают заболевания не только растений, но и человека, животных и даже бактерий. Однако только после установления природы гена и 2 Материал составлен by zOrg, для экзамена по микробиологии ИвГМА 2015 год генетического кода вирусы были отнесены к живой природе. 5. Следующим важным этапом в развитии микробиологии стало открытие антибиотиков. В 1929г. А.Флеминг открыл пенициллин, и началась эра антибиотикотерапии, приведшая к революционному прогрессу медицины. В дальнейшем выяснилось, что микробы приспосабливаются к антибиотикам, а изучение механизмов лекарственной устойчивости привело к открытию второго- внехромосомного (плазмидного) генома бактерий. Изучение плазмид показало, что они представляют собой еще более просто устроенные организмы, чем вирусы, и в отличии от бактериофагов не вредят бактериям, а наделяют их дополнительными биологическими свойствами. Открытие плазмид существенно дополнило представления о формах существования жизни и возможных путях ее эволюции. 6. Современный молекулярно- генетический этап развития микробиологии, вирусологии и иммунологии начался во второй половине 20 века в связи с достижениями генетики и молекулярной биологии, созданием электронного микроскопа. В опытах на бактериях была доказана роль ДНК в передаче наследственных признаков. Использование бактерий, вирусов, а затем и плазмид в качестве объектов молекулярно- биологических и генетических исследований привело к более глубокому пониманию фундаментальных процессов, лежащих в основе жизни. Выяснение принципов кодирования генетической информации в ДНК бактерий и установление универсальности генетического кода позволило лучше понимать молекулярно- генетические закономерности, свойственные более высоко организованным организмам. Расшифровка генома кишечной палочки сделало возможным конструирование и пересадку генов. К настоящему времени генная инженерия создала новые направления биотехнологии. Расшифрованы молекулярно- генетическая организация многих вирусов и механизмы их взаимодействия с клетками, установлены способность вирусной ДНК встраиваться в геном чувствительной клетки и основные механизмы вирусного канцерогенеза. Подлинную революцию претерпела иммунология, далеко вышедшая за рамки инфекционной иммунологии и ставшая одной из наиболее важных фундаментальных медико- биологических дисциплин. К настоящему времени иммунология- это наука, изучающая не только защиту от инфекций. В современном понимании иммунология- это наука, изучающая механизмы самозащиты организма от всего генетически чужеродного, поддержании структурной и функциональной целостности организма. Иммунология в настоящее время включает ряд специализированных направлений, среди которых, наряду с инфекционной иммунологией, к наиболее значимым относятся иммуногенетика, иммуноморфология, трансплантационная иммунология, иммунопатология, иммуногематология, онкоиммунология, иммунология онтогенеза, вакцинология и прикладная иммунодиагностика. Микробиология и вирусология как фундаментальные биологические науки также включают ряд самостоятельных научных дисциплин со своими целями и задачами: общую, техническую (промышленную), сельскохозяйственную, ветеринарную и имеющую наибольшее значение для человечества медицинскую микробиологию и вирусологию. Медицинская микробиология и вирусология изучает возбудителей инфекционных болезней человека (их морфологию, физиологию, экологию, биологические и генетические характеристики), разрабатывает методы их культивирования и идентификации, специфические методы их диагностики, лечения и профилактики. К отдельным наиболее важным разделам медицинской микробиологии и вирусологии можно отнести клиническую микробиологию, санитарную микробиологию, медицинскую микологию и протозоологию, медицинскую паразитологию, учение о сапронозах. 7.Перспективы развития. На пороге 21 века микробиология, вирусология и иммунология представляют одно из ведущих направлений биологии и медицины, интенсивно развивающееся и расширяющее границы человеческих знаний. Иммунология вплотную подошла к регулированию механизмов самозащиты организма, коррекции иммунодефицитов, решению проблемы СПИДа, борьбе с онкозаболеваниями. Создаются новые генно- инженерные вакцины, появляются новые данные об открытии инфекционных агентов - возбудителей “соматических” заболеваний (язвенная болезнь желудка, гастриты, гепатиты, инфаркт миокарда, склероз, отдельные формы бронхиальной астмы, шизофрения и др.). 3 Систематика микробов. Понятие вид, штамм, культура, клон, популяция. Методы идентификации микробов . 1. Систематика микроорганизмов. Систематика- распределение микроорганизмов в соответствии с их происхождением и биологическим сходством. Систематика занимается всесторонним описанием видов организмов, выяснением степени родственных отношений между ними и объединением их в различные по уровню родства классификационные единицы- таксоны. Основные вопросы, решаемые при систематике (три аспекта, три кита систематики)- классификация, идентификация и номенклатура. Классификация- распределение (объединение) организмов в соответствии с их общими свойствами (сходными генотипическими и фенотипическими признаками) по различным таксонам. Таксономия- наука о методах и принципах распределения (классификации) организмов в соответствии с их 3 Материал составлен by zOrg, для экзамена по микробиологии ИвГМА 2015 год иерархией. Наиболее часто используют следующие таксономические единицы (таксоны)- штамм, вид, род. Последующие более крупные таксоны - семейство, порядок, класс. В современном представлении вид в микробиологии- совокупность микроорганизмов, имеющих общее эволюционное происхождение, близкий генотип (высокую степень генетической гомологии, как правило более 60%) и максимально близкие фенотипические характеристики. Нумерическая (численная) таксономия основывается на использовании максимального количества сопоставляемых признаков и математическом учете степени соответствия. Большое число сравниваемых фенотипических признаков и принцип их равной значимости затрудняло классификацию. При изучении, идентификации и классификации микроорганизмов чаще всего изучают следующие (гено- и фенотипические) характеристики: 1.Морфологические - форма, величина, особенности взаиморасположения, структура. 2.Тинкториальные - отношение к различным красителям (характер окрашивания), прежде всего к окраске по Граму. По этому признаку все микроорганизмы делят на грамположительные и грамотрицательные. Морфологические свойства и отношение к окраске по Граму позволяют, как правило, отнести изучаемый микроорганизм к крупным таксонам - семейству, роду. 3.Культуральные - характер роста микроорганизма на питательных средах. 4.Биохимические - способность ферментировать различные субстраты (углеводы, белки и аминокислоты и др.), образовывать в процессе жизнедеятельности различные биохимические продукты за счет активности различных ферментных систем и особенностей обмена веществ. 5.Антигенные - зависят преимущественно от химического состава и строения клеточной стенки, наличия жгутиков, капсулы, распознаются по способности макроорганизма (хозяина) вырабатывать антитела и другие формы иммунного ответа, выявляются в иммунологических реакциях. 6.Физиологические- способы углеводного (аутотрофы, гетеротрофы), азотного (аминоавтотрофы, аминогетеротрофы) и других видов питания, тип дыхания (аэробы, микроаэрофилы, факультативные анаэробы, строгие анаэробы). 7.Подвижность и типы движения. 8.Способность к спорообразованию, характер спор. 9.Чувствительность к бактериофагам, фаготипирование. 10.Химический состав клеточных стенок - основные сахара и аминокислоты, липидный и жирнокислотный состав. 11.Белковый спектр (полипептидный профиль). 12.Чувствительность к антибиотикам и другим лекарственным препаратам. 13.Генотипические (использование методов геносистематики). Номенклатура- название микроорганизмов в соответствии с международными правилами. Для обозначения видов бактерий используют бинарную латинскую номенклатуру род/вид, состоящую из названия рода (пишется с заглавной буквы) и вида (со строчной буквы). Примеры - Shigella flexneri, Rickettsia sibirica. В микробиологии часто используется и ряд других терминов для характеристики микроорганизмов. Штамм- любой конкретный образец (изолят) данного вида. Штаммы одного вида, различающиеся по антигенным характеристикам, называют серотипами (серовариантами- сокращенно сероварами), по чувствительности к специфическим фагам- фаготипами, биохимическим свойствам- хемоварами, по биологическим свойствам- биоварами и т.д. Колония- видимая изолированная структура при размножении бактерий на плотных питательных средах, может развиваться из одной или нескольких родительских клеток. Если колония развилась из одной родительской клетки, то потомство называется клон. Культура- вся совокупность микроорганизмов одного вида, выросших на плотной или жидкой питательной среде. Основной принцип бактериологической работы - выделение и изучение свойств только чистых (однородных, без примеси посторонней микрофлоры) культур. Идентификация. Основные фено- и генотипические характеристики, используемые для классификации микроорганизмов, используются и для идентификации, т.е. установления их таксономического положения и прежде всего видовой принадлежности- наиболее важного аспекта микробиологической диагностики инфекционных заболеваний. Идентификация осуществляется на основе изучения фено- и генотипических характеристик изучаемого инфекционного агента и сравнения их с характеристиками известных видов. При этой работе часто применяют эталонные штаммы микроорганизмов, стандартные антигены и иммунные сыворотки к известным прототипным микроорганизмам. У патогенных микроорганизмов чаще изучают морфологические, тинкториальные, культуральные, биохимические и антигенные свойства. 4. Принципы систематики микробов. Современные приемы систематики – рестрикционный анализ, типирование ДНК и 16S-рибосомальной РНК. Прионы. 4 Материал составлен by zOrg, для экзамена по микробиологии ИвГМА 2015 год Таксономия- наука о методах и принципах распределения (классификации) организмов в соответствии с их иерархией. Наиболее часто используют следующие таксономические единицы (таксоны)- штамм, вид, род. Последующие более крупные таксоны - семейство, порядок, класс. В современном представлении вид в микробиологии- совокупность микроорганизмов, имеющих общее эволюционное происхождение, близкий генотип (высокую степень генетической гомологии, как правило более 60%) и максимально близкие фенотипические характеристики. Нумерическая (численная) таксономия основывается на использовании максимального количества сопоставляемых признаков и математическом учете степени соответствия. Большое число сравниваемых фенотипических признаков и принцип их равной значимости затрудняло классификацию. При изучении, идентификации и классификации микроорганизмов чаще всего изучают следующие (гено- и фенотипические) характеристики: 1.Морфологические - форма, величина, особенности взаиморасположения, структура. 2.Тинкториальные - отношение к различным красителям (характер окрашивания), прежде всего к окраске по Граму. По этому признаку все микроорганизмы делят на грамположительные и грамотрицательные. Морфологические свойства и отношение к окраске по Граму позволяют, как правило, отнести изучаемый микроорганизм к крупным таксонам - семейству, роду. 3.Культуральные - характер роста микроорганизма на питательных средах. 4.Биохимические - способность ферментировать различные субстраты (углеводы, белки и аминокислоты и др.), образовывать в процессе жизнедеятельности различные биохимические продукты за счет активности различных ферментных систем и особенностей обмена веществ. 5.Антигенные - зависят преимущественно от химического состава и строения клеточной стенки, наличия жгутиков, капсулы, распознаются по способности макроорганизма (хозяина) вырабатывать антитела и другие формы иммунного ответа, выявляются в иммунологических реакциях. 6.Физиологические- способы углеводного (аутотрофы, гетеротрофы), азотного (аминоавтотрофы, аминогетеротрофы) и других видов питания, тип дыхания (аэробы, микроаэрофилы, факультативные анаэробы, строгие анаэробы). 7.Подвижность и типы движения. 8.Способность к спорообразованию, характер спор. 9.Чувствительность к бактериофагам, фаготипирование. 10.Химический состав клеточных стенок - основные сахара и аминокислоты, липидный и жирнокислотный состав. 11.Белковый спектр (полипептидный профиль). 12.Чувствительность к антибиотикам и другим лекарственным препаратам. 13.Генотипические (использование методов геносистематики). В последние десятилетия для классификации микроорганизмов, помимо их фенотипических характеристик (см. пп.1- 12), все более широко и эффективно используются различные генетические методы (изучение генотипа- генотипических свойств). |