Главная страница
Навигация по странице:

  • Мартенситное превращение

  • Особенности мартенситного превращениях в сталях.

  • Влияние отпуска на механические свойства .

  • Технология термической обработки стали Отжиг 1 рода Рекристаллизационный отжиг

  • Отжиг для снятия внутренних напряжений.

  • Отжиг 2 рода Отжиг 2 рода

  • Закалка стали Температура закалки

  • Критическая скорость охлаждения

  • При закалке конструкционных углеродистых и низколегированных сталей

  • Для закалки высокоуглеродистых (инструментальных ) и легированных сталей

  • Способы закалки Закалка в двух средах

  • Лекции по дисциплине Металловедение. Атомнокристаллическая структура металлов


    Скачать 453.5 Kb.
    НазваниеАтомнокристаллическая структура металлов
    АнкорЛекции по дисциплине Металловедение.doc
    Дата12.07.2018
    Размер453.5 Kb.
    Формат файлаdoc
    Имя файлаЛекции по дисциплине Металловедение.doc
    ТипДокументы
    #21382
    страница5 из 9
    1   2   3   4   5   6   7   8   9


    Промежуточное превращение – бейнитное
    В углеродистых сталях в интервале 500-250° С происходит бейнитное или промежуточное превращение - промежуточное между перлитным и мартенситным. При превращении образуется также феррито-цементитная смесь, но карбидные частицы не имеют пластинчатого строения и очень дисперсны (видны только в электронном микроскопе). Различают “верхний” и “нижний” бейнит, образующийся соответственно в верхней (

    550-4000) и нижней (-400-250°) части промежуточного интервала температур.

    В отличие от перлитного, бейнитное превращения является сдвиговым диффузионным, т. е. перестройка кристаллической решетки происходит за счет кооперированного перемещения атомов железа на расстояния меньше межатомных при диффузионном перемещении атомов углерода. Верхний и нижний бейнит отличаются друг от друга строением и прочностными характеристиками. Первый имеет перистое строение, сравнительно низкую прочность и пластичность; второй игольчатое строение (близкое к мартенситу), высокую прочность и пластичность.
    Мартенситное превращение

    Аустенит при быстром охлаждении превращается в новую метастабильную) фазу мартенсит упорядоченный пересыщенный твердый раствор углерода в Fe α. При перестройке решетки ГЦК в ОЦК в последней сохраняется концентрация углерода такая же, как и в исходном аустените. Максимально возможная концентрация углерода в мартенсите 2, 14%.

    Атомы углерода искажают решетку ОЦК и превращают ее из кубической в тетрагональную, у которой отношение с /а >1. Чем больше углерода в стали, тем больше тетрагональность решетки мартенсита. Атомы углерода занимают определенное место в решетке (октаэдрические поры), поэтому раствор является упорядоченным.

    Для мартенсита характерна особая микроструктура. Его кристаллы представляют собой тонкие пластины, утоненные к концам (на микрошлифе они имеют форму игл, отсюда термин “ игольчатая структура”), расположенные параллельно или пересекающиеся друг с другом под углом 60° и 120°. Ориентировка пластин мартенсита связана с тем, что они могут образовываться в аустените только по определенным кристаллографическим плоскостям и направлениям наиболее густо усеянным атомами (меньше работа образования кристаллов новой фазы мартенсита).

    Тонкая структура мартенситных кристаллов характеризуется высокой плотностью дислокации (1011 -1012 см-2) и небольшими размерами фрагментов (менее 1мкм и ячеек (100-200 А°). С увеличением содержания углерода растет плотность дислокации уменьшаются размеры фрагментов.

    Особенности мартенситного превращениях в сталях.

    1. Превращение бездиффузионное, оно не сопровождается диффузионньм перераспределением атомов углерода или других легирующих элементов. Превращение является сдвиговым, т. е. осуществляется путем кооперативного смещения атомов железа при перестройке решетки ГЦК в ОЦК, при этом атомы железа не обмениваются местами, а смещаются относительно друг от друга на расстояния меньше межатомных.

    2. Мартенситное превращение нельзя подавить быстрым охлаждением, как это возможно делать для любого диффузионного превращения. Превращение для каждой марки стали начинается с определенной температуры Мн и заканчивается при температуре Мк, которые практически не зависят от скорости охлаждения.

    3. Для развития мартенситного превращения необходимо непрерывное охлаждение стали в мартенситном интервале Мн - Мк,. Однако в отличие от перлитного превращения, оно даже при достижении температуры Мк, не идет до конца и в структуре сохраняется некоторое количество остаточного аустенита. Если приостановить охлаждение внутри мартенситного материала, то образование мартенсита прекращается, т. е. превращение не идет при изотермических выдержках.

    4. Температурное положение точек Мн и Мк, зависит от химического состава стали и прежде всего от содержания углерода. Это связано прежде всего с тем, что углерод и большинство легирующих элементов повышают устойчивость переохлажденного аустенита, изменяют его упругопластические свойства. Повышение их содержания в стали снижает положение точек Мн и Мк.

    5. Мартенсит по сравнению с другими структурными составляющими стали имеет наибольший удельный объем. Увеличение удельного объема при мартенситном превращении приводит к росту упругой энергии, внутренним напряжением, которые приводят к пластической деформации, короблению и даже трещинам.

    6. Мартенситные кристаллы растут с колоссальной скоростью - 106 мм/сек

    Свойства мартенсита. Характерной особенностью мартенсита является его высокая прочность и твердость. Твердость мартенсита возрастает с увеличением в нем содержания углерода. В стали с содержанием 0, 6-0, 7% С твердость мартенсита HRC 65. Это в 6 раз больше твердости феррита. Предел прочности низкоуглеродистого мартенсита (0, 015% С) кг/мм2, а при 0, 6-0, 2% С -260-270кг/мм 2. Однако с повышением содержания углерода растет хрупкость. Так уже при содержании > 0, 35-0, 40% С пластичность мартенсита очень низкая и точно определить прочностные характеристики затруднительно.

    Упрочнение при закалке на мартенсит является результатом действия нескольких механизмов торможения движения дислокации, плотность которых очень велика. Важнейшая роль принадлежит углероду. Атомы углерода, искажая решетку α - железа, затрудняют движение дислокации. В процессе закалки или после нее атомы углерода образуют атмосферы на дислокациях, закрепляя их. Упрочняющие влияние углерода на мартенсит очень велико и можно считать, что твердость закаленной стали не зависит от содержания легирующих элементов, образующих твердые растворы замещения и определяется только содержанием углерода.

    Основная причина резкого охрупчивания при закалке углеродистых сталей низкая подвижность дислокации в мартенсите, содержащем углерод. В результате снижается резко сопротивление распространению трещин и сталь хрупко разрушается.
    Влияние отпуска на механические свойства. Распад мартенсита при отпуске оказывает существенные влияния на свойства. При низких температурах отпуска до 200-250° уменьшается склонность стали к хрупкому разрушению при этом сохраняется высокая твердость. Прочность и вязкость могут несколько возрастать из-за уменьшения микро- и макронапряжений.

    Повышение температуры отпуска от 200-250° до 500-650° заметно снижает твердость, пределы прочности, текучести и повышает относительное удлинение и сужение.

    С ростом температуры отпуска разупрочнение возрастает из-за следующих причин:

    1) уменьшается нарушение когерентности на границе карбид твердый раствор и снятия упругих концентрация в твердом растворе;

    2) микронапряжений;

    3) коагуляция карбидов и увеличение межпластиночного расстояния;

    4) развитие возврата и рекристаллизации. В разных температурных интервалах преобладает действие разных факторов.

    В высокоуглеродистых сталях, содержащих значительное количество остаточного аустенита, распад его с выделением карбидов задерживает падение твердости, а в интервале 200-250 ° даже несколько увеличивает ее (рис. 69 б).


    Технология термической обработки стали

    Отжиг 1 рода
    Рекристаллизационный отжиг - нагрев холоднодеформированного металла выше температуры рекристаллизации, выдержка и медленное охлаждение для снятия наклепа. Используется, как предварительная обработка перед холодной пластической деформацией, как промежуточная операция между операциями холодной деформации или как конечная операция после обработки давлением. Температура отжига зависит от состава стали и для достижения рекристаллизации по всему объему превышает температурный порог рекристаллизации. Для стали, содержащей 0, 08-0, 20% С, чаще подогреваемой холодной пластической деформации, температура отжига 680-700°. Продолжительность нагрева 0, 5-1, 5 часа, время выдержки должно быть достаточным для завершения рекристаллизационных процессов.

    Отжиг для снятия внутренних напряжений.

    Применяется для снятия остаточных напряжении, возникших в процессе предшествующих технологических операций (литье, сварка, обработка резаньем и т. д.). Температура отжига обычно 550-680°. Время выдержки устанавливается экспериментально, охлаждение медленное до 200-300°. В результате термической обработки повышаются допустимые внешние нагрузки, сопротивляемость усталости и ударным нагрузкам, снижается склонность к хрупкому разрушению, стабилизируются размеры и предотвращается коробление и поводка изделий.
    Отжиг 2 рода
    Отжиг 2 рода различаются главным образом способами охлаждения и степенью переохлаждения аустенита, а также положением температур нагрева относительно критических точек. Основные разновидности отжига 2 рода: полный, изотермический, нормализационный, патентирование. Эти виды отжига характерны для доэвтектоидных сталей. Заэвтектоидные стали подвергаются сфероидизирующему отжигу и нормализации (нормализационный отжиг).

    Полный отжиг - нагрев на 30-50° выше точки Ac1, выдержка и охлаждение вместе с печью (график 2 на рис. 46) до 200-400°, дальнейшее охлаждение на воздухе (ускоряется технологический процесс). Чрезмерное повышение температуры недопустимо т. к. вызывает рост аустенитного зерна и ухудшает свойства. Легированные стали, обладающие высокой устойчивостью переохлажденного аустенита, следует охлаждать медленнее (10-100 град/час), чем углеродистые(150-200град/ час). Структура после отжига доэвтектоидной стали Ф + П, зерно обычно измельчается.

    Неполный отжиг - нагрев на 20-50° выше Ac1, выдержка и медленное охлаждение, для доэвтектоидных сталей применяют с целью улучшения обрабатываемости, при этом происходит только перекристаллизация перлита, для заэвтектоидных сталей применяют только неполный отжиг, который обеспечивает сфероидизацию цементита и высокие свойства, поэтому этот отжиг называют сфероидизирующим. Полный отжиг (с нагревом выше Аст) для заэвтектоидных сталей не используется, т. к. при медленном охлаждении образуется грубая сетка вторичного цементита, ухудшающая механические свойства.

    Изотермический отжиг - нагрев производится также как и для полного отжига, затем быстро охлаждают (переносят в другую печь) до температур лежащих на 100-150°, ниже A1 и делают изотермическую выдержку до полного распада аустенита после чего охлаждают на воздухе (график 5 на рис. 46). Преимущество уменьшение длительности процесса, особенно для легированных сталей, получение более однородной структуры.

    Используется для заготовок и др. Изделий небольших размеров, т. к. при больших массах металла невозможно обеспечить равномерное охлаждение до температуры изотермической выдержки.

    Нормализационный отжиг (нормализация) - нагрев на 30-50 выше температуры линии GSE , выдержка и охлаждение на воздухе. Ускоренное охлаждение на воздухе приводит к распаду аустенита при более низких температурах, что повышает дисперсность феррито-цементитной структуры. Это повышает на 10-15% прочность и твердость средне - и высокоуглеродистой стали по сравнению с отожженной. Нормализацию широко применяют для улучшения свойств стальных отливок взамен закалки и отпуска. Для низкоуглеродистьк сталей нормализацию применяют вместо полного отжига (быстрее, а свойства близкие). Для отливок из среднеуглеродистой стали нормализация может быть конечной термической операцией. Для заэвтектоидных сталей нормализация применяется для устранения цементитной сетки, если она разорвалась при предшествующей обработке.

    Патентирование - для получения канатной, пружинной и рояльной проволоки применяют изотермическую обработку, называемую патентированием. Проволоку из углеродистых сталей, содержащих от 0, 45 до 0, 85 % С нагревают в проходной печи до температуры на 150-200° выше Асз, пропускают через свинцовую или соляную ванну с температурой 450-550° и наматывают на приводной барабан. Распад аустенита происходит около изгиба С образных кривых. Структура феррито-цементитная, с очень малым межпластинчатым расстоянием - троостит патентирования. Избыточных фаз нет. После такой термической обработки проволоку подвергают многократному холодному волочению. В результате она имеет предел прочности до 200 кг/мм 2 (возможно получить до 500 кг/мм2).
    Закалка стали
    Температура закалки определяется положением критических точек A1 и Аз, - доэвтектоидные стали нагревают под закалку до температуры Асз +30- 50 ° (структура после закалки М + Аост (при С > 0, 5 %), заэвтектоидные до Ac1 +20 -30 °, (структура после закалки М + Ц2 + Аост). При закалке доэвтектоидных сталей с температур, соответствующих интервалу Ac1 - Асз, в структуре закаленной стали сохраняется феррит, снижающий прочность и твердость. Перегрев заэвтектоидной стали приводит к росту зерна, что вызывает снижения прочности и сопротивления хрупкому разрушению закаленной стали. Легирующие элементы как правило повышают температуру нагрева и выдержки должны обеспечивать завершение фазовых превращений и не вызывать роста аустенитного зерна и обезуглероживания (рассчитывается по нормативным данным). Нагрев желательно производить в защитной газовой среде, предохраняющий металл окисления и обезуглероживания.

    Закалочные среды. Охлаждающие (закалочные) среды должны обеспечить высокую однородность охлаждения > Vкр при температурах наименьшей устойчивости переохлажденного аустенита (650-950°), чтобы не произошел его распад на феррито- цементную) смесь. Однако целесообразно замедленное охлаждение в области температур мартенситного превращения (ниже 200-300°), чтобы предотвратить образование повышенных внутренних напряжений, приводящих к трещинам.

    Критическая скорость охлаждения (критическая скорость закалки) это минимальная скорость, при которой аустенит еще не распадается на феррито-цементную смесь .

    При закалке конструкционных углеродистых и низколегированных сталей применяют воду и растворы солей в воде, которые обеспечивают скорость охлаждения в критическом интервале 650-550 >Vкр.

    Однако вода создает высокую скорость охлаждения в интервале мартенситного превращения Мк20°), поэтому там, где это возможно ее заменяют менее резкими охладителями. Для закалки высокоуглеродистых (инструментальных) и легированных сталей, переохлажденный аустенит который более устойчив (с - кривые сдвинуты вправо рис. 60), в качестве охлаждающих сред часто используют минеральное масло.

    Оно охлаждает более медленно и равномерно во всем интервале температур, что уменьшает внутреннее направление. Высоколегированные стали могут закаливаться на спокойном или увлажненном воздухе.

    Закаливаемость - способность стали повышать твердость при закалке, зависит от содержания углерода в стали, чем его больше, тем выше твердость. Легирующие элементы оказывают слабое влияние на закаливаемость. Прокаливаемость - глубина проникновения закаленной зоны, (толщина закаленного слоя) в данном охладителе. Прокаливаемость определяется критической скоростью охлаждения (закалки), чем она меньше, тем выше прокаливаемость. Если действительная скорость охлаждения в сердцевине изделия будет превьшать Vk, то сталь получит мартенситную структуру, по всему сечению (сквозная закаливаемость), если < Vk, то изделие прокалится только на некоторую глубину. За глубину закаленного слоя обычно принимают расстояние от поверхности до полу мартенситной зоны (50% М + 50% Т).


    Способы закалки
    Закалка в двух средах. Используются для уменьшения скорости охлаждения в мартенситном интервале. Вначале вода, затем масло (через воду в масло). Необходимо нормировать выдержку в воде. Широко используется при т/о режущего инструмента

    Ступенчатая закалка. Используется также для уменьшения скорости охлаждения в мартенситном интервале. Сталь охлаждают в среде, имеющей температуру выше температуры начала мартенситных превращений Мн (180-250°), дают короткую выдержку, а затем охлаждают на воздухе или в горячем масле. Время выдержки должно быть меньше максимального времени устойчивости переохлажденного аустенита при этой температуре (выбирается по С - диаграмме). Так как скорость охлаждения в горячей среде не велика, то из углеродистой стали подвергать ступенчатой закалке можно изделия только небольшого сечения (8- 10 мм).

    Изотермическая закалка. Возможно не троостит или бейнит (рис73-3) производится в тех же горячих средах, что и ступенчатая закалка, только время выдержки применяют такое, чтобы успел произойти распад аустенита на троостит и бейнит. Стали 'закаленные на бейнит" обладают высокой вязкостью и твердостью близкой к мартенситу, т. е., имеют повышенную конструктивную прочность.

    Обработка стали холодом. Как уже указывалось в сталях, содержащих более 0, 4 - 0, 5% С, после закалки сохраняется значительное количество остаточного аустенита. для уменьшения Аост сталь охлаждают до -70-80°, т. е., до температур, лежащих ниже или близко к Мк. У углеродистых сталей после обработки холодом твердость увеличивается на 1-3 HRC. Обработку надо проводить сразу после закалки для предотвращения стабилизации аустенита.

    Поверхностная закалка. Местная закалка, при которой нагревается и закаливается только поверхностный слой изделия. Нагрев может производиться газовым пламенем (для очень крупных изделий), с последующим охлаждением со скоростью больше Vk, или индукционным нагревом токами высокой частоты (ТВЧ). Как известно плотность индуктированного переменного тока по сечению проводника (изделия) неодинакова. Способ очень рациональный, возможна полная автоматизация процесса термообработки.
    Отпуск стали
    Отпуск закаленной стали позволяет получить изделие с заданными свойствами. Основные влияния на свойства оказывает температура отпуска. По температуре нагрев отличают низкий, средний и высокий отпуск.

    Низкий отпуск. Отпущенный мартенсит (120-150°) широко используется для обработки режущего инструмента, изделий после химико-термической обработки (цементации, нитроцементации) и поверхностной закалки. Основная цель - уменьшить закалочные напряжения. Выдержка 1-3 часа. Разновидность -стабилизация отпуска - длительная выдержка для стабилизации (до 150 часов).
    1   2   3   4   5   6   7   8   9


    написать администратору сайта