Главная страница

Ответы на вопросы по эконометрике (теория) (шпоры). Автокорреляция случайного возмущения. Причины. Последствия. Алгоритм проверки адекватности парной регрессионной модели


Скачать 487.3 Kb.
НазваниеАвтокорреляция случайного возмущения. Причины. Последствия. Алгоритм проверки адекватности парной регрессионной модели
АнкорОтветы на вопросы по эконометрике (теория) (шпоры).docx
Дата30.01.2017
Размер487.3 Kb.
Формат файлаdocx
Имя файлаОтветы на вопросы по эконометрике (теория) (шпоры).docx
ТипДокументы
#1221
КатегорияЭкономика. Финансы
страница3 из 5
1   2   3   4   5

Y = f(X) + ε (1)

где: Y – эндогенная переменная

X – вектор предопределенных переменных

f(X) – детерминированная математическая функция, определяющая закономерность между эндогенной и предопределенными переменными

ε – случайная величина, учитывающая влияние неучтенных факторов и индивидуальные особенности конкретного объекта (случайное возмущение).

Модель (1) называют эконометрической моделью. Правая часть (1) называется обобщенной функциональной или регрессионной зависимостью. При составлении модели случайные возмущения присутствуют только в поведенческих уравнениях эконометрической модели. В уравнениях тождествах они отсутствуют. Рассеянные вокруг нуля случайные возмущения отражают влияние на текущие эндогенные переменные этой модели неучтённых факторов.

В общем виде эконометрической модели случайные возмущения отражаются как:
– вектор-столбец случайных возмущений модели.

Случайные возмущения сохраняются в приведенной форме модели. Их вычисление производится по формуле: ε= A-1, где А - матрица коэффициентов перед эндогенными переменными.

Замечание. Необходимость учета в моделях влияния случайных возмущений является четвертым принципом спецификации эконометрических моделей

34.Отражение в эконометрических моделях фактора времени

Все переменные объекта изменяются со временем. Для этого каждой переменной, которая изменяется со временем добавляется индекс “t”. Например, Ydt означает, что переменная - «уровень спроса» - относится к текущему моменту времени. На примере модели конкурентного рынка имеем:

Экономические модели, значения переменных которых привязаны к моменту времени, называются динамическими.

Переменные, связанные с моментом времени, называются датированными. Необходимость соотнесения переменных модели к моменту времени является третьим принципом спецификации модели. Переменные, которые относятся к предыдущим моментам времени, называются Лаговыми. Значения датированных переменных в различные дискретные моменты времени (например, значения x0, x1, x2,… располагаемого душевого дохода потребителя в рамках модели конкурентного рынка при t=0,1,2…) называются временными рядами. Таким образом, временным рядом называют такую экономическую модель, в которой эндогенная переменная Yt является функцией целочисленного аргумента t.

35, 36, 45.Оценивание линейной модели множественной регрессии в Excel

Модель множественной регрессии имеет вид:
Алгоритм использования процедуры «ЛИНЕЙН» в приложении EXCEL:

1.Подготовка таблицы исходных данных (Записываем в столбцы значения переменных).




A

B







1

y1

x11



xk1

2

y2

x12



xk2











n

yn

x1n



xkn

n+1













n+2













n+3













n+4













n+5













2.Вызов процедуры «ЛИНЕЙН» (Выделяем диапазон ячеек 5×(k+1), нажимаем на значок функции, в диалоговом окне «Категория» выбираем, «Статистические» в диалоговом окне «Выберите функцию» - «Линейн»; щелкнуть мышью по кнопке ОК).

3.Ввод исходных данных в процедуру (В строчке «Известные_значения_y» диалогового окна указать адрес диапазона значений эндогенной переменной yt, а в строчке «Известные_значения_х» - адрес диапазона известных значений предопределенных переменных x11:xkn; в строчку «Конст» диалогового окна занести цифру 1, если есть свободный член и 0, если его нет. В строчку «Статистика» диалогового окна занести цифру 1, Нажать клавиши Ctrl + Shift + Enter).


4. Анализ результата




A

B







1

y1

x11



xk1

2

y2

x12



xk2











n

yn

x1n



xkn

n+1









n+2









n+3





#Н/Д

#Н/Д

n+4

Fтест



#Н/Д

#Н/Д

n+5





#Н/Д

#Н/Д


37.Оценивание регрессионной модели с фиктивной переменной наклона

Термин “фиктивные переменные” используется как противоположность “значащим” переменным, показывающим уровень количественного показателя, принимающего значения из непрерывного интервала. Как правило, фиктивная переменная — это индикаторная переменная, отражающая качественную характеристику. В регрессионных моделях применяются фиктивные переменные двух типов: переменные сдвига и переменные наклона.

Фиктивная переменная наклона изменяет наклон линии регрессии. При помощи фиктивных переменных наклона можно построить кусочно-линейные модели, которые позволяют учесть структурные изменения в экономических процессах (например, введение новых правовых или налоговых ограничений, изменение политической ситуации и т. д.). Для учета возможного изменения наклона графика модели при изменении градации качественного фактора предлагается ввести в спецификацию модели еще одно слагаемое вида «d умноженное на x».

Спецификация регрессионной модели в этом случае (например, для парной регрессионной модели, для простоты) имеет вид:



dt = 0 – до структурных изменений

1 – после структурных изменений,

dt - бинарная переменная

Фиктивная переменная входит в уравнение в мультипликативной форме. Оценки параметров рассчитываются с помощью метода наименьших квадратов. Параметр при фиктивной переменной характеризует степень изменения наклона графика функции регрессии под воздействием качественного фактора.

38.Оценка коэффициентов модели Самуэльсона-Хикса

Спецификация эконометрической модели Самуэльсона-Хикса:

(4.1)

Она предназначена для объяснения текущего уровня инвестиций It величиной ΔYt-1= Yt-1 -Yt-2цепного прироста ВВП за предыдущий период времени. Заметим, что в модели (4.1) величина ΔYt-1 играет роль экзогенной переменной, a It— эндогенной переменной.

Спецификация (4.1) содержит два неизвестных параметра: b, σu(4.2)

Параметр b, называемый акселератором, численно равен увеличению ΔItуровня Itтекущих инвестиций вследствие увеличения на единицу цепного прироста, ΔYt-1ВВП за предыдущий период. Параметр σuимеет смысл среднего квадратического разброса вокруг нуля возможных значений случайного возмущения vt, отражающего влияние на уровень текущих инвестиций Itне определенных в модели (4.1) факторов. Можно сказать, что σu— это мера влияния на уровень текущих инвестиций Itне идентифицированных в модели (4.1) факторов.

Оценим параметры (4.2) модели (4.1). Наилучшая оценка акселератора инвестиций bвычисляется в процессе решения линейного уравнения:

R = S,


(4.4)

называется нормальным уравнением, т.е. = R-1S,

где:



Значение b, вычисленное по правилу (4.4), соответствует интуитивно ясному знаменитому принципу настройки моделей



называемому методом наименьших квадратов.

В свою очередь, оценка среднего квадратического отклонения (СКО) определяется по правилу

(4.7)

В нем

(4.8)

- это оценка случайного возмущения vtв период t. Величина п в знаменателе формулы (4.7) — это количество пар (It , AYt-i) значений переменных модели (4.1), по которым вычисляются оценки , ее неизвестных параметров (4.2). Наконец, вычитаемое (единица) в знаменателе формулы (4.7) — это количество оцениваемых коэффициентов в функции регрессии модели (4.1).

39. Оценка параметров множественной регрессионной модели методом наименьших квадратов

Множественная регрессия позволяет построить и проверить модель линейной связи между зависимой (эндогенной) и несколькими независимыми (экзогенными) переменными: y = f(x1,...,xр), где у - зависимая переменная (результативный признак); х1,...,хр - независимые переменные (факторы).

Линейное уравнение множественной корреляции: y=a+b1x1+b2x2+…+bpxp+ε. Для оценки параметров уравнения множественной регрессии применяют МНК. Для линейных уравнений и нелинейных уравнений, приводимых к линейным, строится следующая система нормальных уравнений, решение которой позволяет получить оценки параметров регрессии:



Для ее решения может быть применён метод определителей: a=∆a / ∆, b1=∆b1 / ∆,…, bp=∆bp / ∆, - определитель системы



∆a, ∆b1,…, ∆bp – частные определители; которые получаются путем замены соответствующего столбца матрицы определителя системы данными левой части системы.

40. Оценка параметров парной регрессионной модели методом наименьших квадратов

Классический подход к оцениванию параметров линейной регрессии основан на методе наименьших квадратов (МНК).

МНК позволяет получить такие оценки параметров a и b, при которых сумма квадратов отклонений фактических значений результативного признака y от расчетных (теоретических) минимальна:



Для того чтобы найти минимум функции, надо вычислить частные производные по каждому из параметров a и b и приравнять их к нулю. Тогда мы получаем следующую систему нормальных уравнений для оценки параметров a и b



Решая систему нормальных уравнений либо методом последовательного исключения переменных, либо методом определителей, найдем искомые оценки параметров a и b. Можно воспользоваться следующими формулами для a и b:



Эта формула получена из первого уравнения системы, если все его члены разделить на n:

, где cov(x,y) — ковариация признаков; σх2— дисперсия признака х. Поскольку , получим следующую формулу расчета оценки параметра b



Таким образом:

Свойство несмещенности оценок состоит в том, что математическое ожидание оценки должно быть равно истинному значению параметра.

Свойство состоятельности оценок состоит в том, что с увеличением наблюдений оценка становится более надежной в вероятностном смысле.

Оценка называется эффективной, если она имеет минимальную дисперсию по сравнению с любыми другими оценками этого параметра в классе выбранных процедур.

41. Оценка статистической значимости коэффициентов модели множественной регрессии.

Данная оценка с помощью t-критерия Стьюдента сводится к вычислению корня квадратного из величины соответствующего частного критерия Фишера.

При тесной линейной связанности факторов, входящих в ур-е множественной регрессии, возможна проблема мультиколлинеарности факторов. Колич-ым показателем явной коллинеарности двух переменных явл-ся соответствующий линейный коэф-т парной корреляции между этими двумя факторами. Две переменные явно коллинеарны, если этот коэффициент корреляции больше или равен 0,7. Чем сильнее мультиколлинеарность (без обязательного наличия явной коллинеарности) факторов, тем менее надежна оценка распределения суммы объясненной вариации по отдельным факторам с помощью МНК.

При проверке значимости коэф-ов модели множ. регрессии крит. значение t-критерия определяется как tкрит(а;n-l-1), где а – уровень значимости, n – объём выборочной совокупности, l – число оцениваемых по выборке параметров, (n-l-1) – число степеней свободы, которое опр-ся по таблице распределений t-критерия Стьюдента.

При проверке основной гипотезы вида http://lib.rus.ec/i/68/257268/pic_305.png

наблюдаемое значение частного F-критерия Фишера-Снедекора рассчит-ся по формуле:http://lib.rus.ec/i/68/257268/pic_306.png

Ситуации

Если наблюдаемое значение t-критерия больше критического значения t-критерия (определённого по таблице распределения Стьюдента), т. е. tнабл≥tкрит, то основная гипотеза о незначимости коэф-та βk модели множ. регрессии отвергается, и он является значимым.

Если меньше, то основная гипотеза о незначимости коэф-та βk принимается. И данный коэф-т можно в дальнейшем не учитывать.

Проверка основной гипотезы о значимости модели множ-ой регрессии в целом состоит в проверке гипотезы о значимости коэф-та множ. корреляции или значимости пар-ов модели регрессии.

Если проверка в целом осущ-ся, то выдвигается основная гипотеза вида Н0:R(y,xi)=0, утверждающая, что коэф-т множ. корреляции является незначимым, и, следовательно, модель множ. регрессии в целом также является незначимой.

Обратная или конкурирующая гипотеза вида Н1:R(y,xi)≠0 утверждает, что коэф-т множ. корреляции является значимым, и, следовательно, модель множ. регрессии в целом также является значимой.

Данные гипотезы проверяются с помощью F-критерия Фишера-Снедекора. Наблюдаемое значение F-критерия (вычисленное на основе выборочных данных) сравнивают со значением F-критерия, кот. опр-ся по таблице распределения Фишера-Снедекора, и называется критическим.

42. Подбор переменных в модели множественной регрессии на основе метода оценки информационной ёмкости.

С формальной точки зрения, объясняющие переменные в линейной эконометрической модели должны обладать следующими свойствами:

• иметь высокую вариабельность;

• быть сильно коррелированными с объясняемой переменной;

• быть слабо коррелированными между собой;

• быть сильно коррелированными с представляемыми ими другими переменными, не используемыми в качестве объясняющих.

Объясняющие переменные подбираются с помощью статистических методов. Процедура подбора переменных состоит из следующих этапов:

1. На основе накопленных знаний составляется множество так называемых потенциальных объясняющих переменных (первичных переменных), в которое включаются все важнейшие величины, влияющие на объясняемую переменную. Такие переменные будем обозначать

2. Собирается статистическая информация о реализациях как объясняемой переменной, так и потенциальных объясняющих переменных. Формируется вектор у наблюдаемых значений переменной Y и матрица X наблюдаемых значений переменных в виде



3. Исключаются потенциальные объясняющие переменные, характеризующиеся слишком низким уровнем вариабельности.

4. Рассчитываются коэффициенты корреляции между всеми рассматриваемыми переменными.

5. Множество потенциальных объясняющих переменных редуцируется с помощью выбранной статистической процедуры.

Речь идет о том, чтобы объясняющие переменные хорошо представляли те переменные, которые не были включены в модель.

Идея метода показателей информационной емкости сводится к выбору таких объясняющих переменных, которые сильно коррелированы с объясняемой переменной, и одновременно, слабо коррелированы между собой. В качестве исходных точек этого метода рассматриваются вектор и матрица R.

Рассматриваются все комбинации потенциальных объясняющих переменных, общее количество которых составляет I = 2W-1. Для каждой комбинации потенциальных объясняющих переменных рассчитываются индивидуальные и интегральные показатели информационной емкости.

Индивидуальные показатели информационной емкости в рамках конкретной комбинации рассчитываются по формуле

; (l=1,2,…,L; j=1,2,…), где l – номер переменной, – количество переменных в рассматриваемой комбинации.

Интегральные рассчитываются по формуле

, (l=1,2,…,L). В качестве объясняющих выбирается такая комбинация переменных, которой соответствует максимальное значение интегрального показателя и формационной емкости.

43. Подбор переменных в модели множественной регрессии методом «снизу вверх»

Для подбора переменных в модели множественной «регрессии методом снизу вверх» мы для начала берем переменные х1,х2,х3…хn. Включаем переменную х1 в модель.

.

Делаем по этой модели линейн. Находим соответственно по линейн F. Ищем F. Если Fбольше чем F, то следовательно качество модели улучшилось. Добавляем еще одну переменную.

Проделываем тот же алгоритм при добавлении каждой переменной.

Если же Fменьше чем F,то исключаем эту переменную, так как качество модели не улучшилось с ее добавлением.

44. Подбор переменных в модели множественной регрессии методом исключения переменных («сверху вниз»).

Для подбора переменных в модели множественной «регрессии методом сверху вниз» мы для начала берем все переменные х1,х2,х3…хn. Включаем все эти переменные в модель.

.

Делаем функцию «линейн». По этой функции соответственно находим число Фишера F. Число Фишера мы ищем для оценки качества модели.

Проводим тест Стьюдента. Находим tкр., находим , ,…. Сравинваем их с tкр. Выделяем все t, которые меньше tкр. Из них уже находим наименьшее . Допустим это . Исключаем столбик, соответствующий .(х2).

Уже по новой модели (без столбика х2) вычисляем линейн.. Находим число Фишера F. Если F больше чем F, то качество модели улучшилось. Можем сделать вывод о том, что мы правильно исключили переменную. Если же наоборот, то не стоит исключать эту переменную, так как в следствие этого модель не улучшилась.

По новой модели( без столбика х2) проводим тест Стьюдента. Находим tкр, находим , ,…. Сравинваем их с tкр. Выделяем все t, которые меньше tкр. Из них уже находим наименьшее . и т.д.

Этот алгоритм проделываем до тех пор, пока все не будут больше чем tкр.

46. Последствия гетероскедастичности. Тест GQ

Последствия:

  1. не приводит к смещению оценок коэффициентов регрессии;

  2. увеличивает дисперсию распределения оценок коэффициентов;

  3. вызывает тенденцию к недооценке стандартных ошибок коэффициентов при использовании МНК.

Тест Г-К позволяет проконтролировать равенство дисперсий случайных возмущений.

Алгоритм теста:

  1. сформировать служебную переменную pi=|x1i|+|x2i|+…+|xki|

  2. упорядочить уравнения наблюдений в порядке возрастания переменной pi

  3. разбить полученные уравнения примерно на 3 равные части

  4. оценить модели по первой и последней частям уравнений наблюдений и вычислить для них ESS (дисперсии)

  5. вычислить статистики GQ=ESS1/ESS2 и GQ^-1

  6. найти значение Fкрит (через функцию FРАСПОБР)

  7. сравнить полученные статистики с Fкрит. Если GQ<= Fкрити GQ^-1<=Fкрит, то остаток в модели гомо-чен.

47. Применение теста Стьюдента в процедуре подбора переменных в модели множественной регрессии

Построение уравнения множественной регрессии начинается с решения вопроса о спецификации модели, включает в себя два круга вопросов: отбор факторов и выбор вида уравнения регрессии.

Включение в уравнения множественной регрессии того или иного набора факторов связано, прежде всего, с представлением исследователя о природе взаимосвязи моделируемого показателя с другими экономическими явлениями. Факторы, включаемые во множественную регрессию должны отвечать следующим требованиям:

  • должны быть количественно измеримы;

  • не должны быть интеркоррелированы и, тем более, находиться в точной функциональной связи.

Включаемые во множественную регрессию факторы должны объяснять вариацию независимой переменной. Если строится модель с набором р-факторов, то для нее рассчитывается показатель детерминации R2, который фиксирует долю объясненной вариации результативного признака за счет рассматриваемых в регрессии р-факторов. Влияние других, неучтенных в модели факторов, оценивается как 1-R2 с соответствующей остаточной дисперсией S2 .

При дополнительном включении в регрессию фактора (1+р) коэффициент детерминации должен возрастать, а остаточная дисперсия уменьшаться: R2p+1 >= R2p и S2р+1 =< S2р

Если же этого не происходит и данные показатели практически мало отличаются друг от друга, то включаемые в анализ фактор хр+1 не улучшает модель и практически является лишним фактором.

Насыщение модели лишними факторами не только не снижает величину остаточной дисперсии и не увеличивает показатель детерминации, но и приводит к статистической незначимости параметром регрессии по t –критерию Стьюдента. Т.о. отбор факторов обычно осуществляется в две стадии: на первой – подбирают факторы исходя из сущности проблемы; на второй – на основе матрицы показателей корреляции определяют t-статистики для параметров регрессии.

Для оценки значимости коэффициента регрессии его величину сравнивают с его стандартной ошибкой, т.е. определяют фактическое значение t-критерия Стьюдента

где mb – стандартная ошибка параметра ,

где S остаточная дисперсия на одну степень свободы

Данный критерий затем сравнивается с табличным значением при определенном уровне значимости α и числе степеней свободы (n-2).

Если tтабл < tфакт, то H0 отклоняется, т.е. переменная оказывает влияние на модель. Если tтабл > tфакт, то гипотеза Ноне отклоняется т.е. переменная не оказывает влияние на модель.

48. Применение фиктивных переменных при исследовании сезонных колебаний: спецификация модели, экономический смысл параметров при фиктивных переменных

Термин “фиктивные переменные” используется как противоположность “значащим” переменным, показывающим уровень количественного показателя, принимающего значения из непрерывного интервала. Как правило, фиктивная переменная — это индикаторная переменная, отражающая качественную характеристику. Чаще всего применяются бинарные фиктивные переменные, принимающие два значения, 0 и 1, в зависимости от определенного условия. Например, в результате опроса группы людей 0 может означать, что опрашиваемый - мужчина, а 1 - женщина. Могут быть разного рода атрибутивные признаки, такие, например, как профессия, пол, образование, климатические условия, принадлежность к определенному региону.

Регрессионная модель, включающая в качестве фактора (факторов) фиктивную переменную, называется регрессионной моделью с переменной структурой.

Рассмотрим временной ряд Xi j,

где i — это номер сезона (периода времени внутри года, напри мер, месяца или квартала);

(L — число сезонов в году);

j — номер года, j = (m — общее количество лет).

Количество уровней исходного ряда равно L × m = n. Число сезонных фиктивных переменных в регрессионной модели всегда должно быть на единицу меньше сезонов внутри года, т. е. должно быть равно величине L − 1. При моделировании годовых данных регрессионная модель, помимо фактора времени, должна содержать одиннадцать фиктивных компонент (12 − 1).

Каждому из сезонов соответствует определенное сочетание фиктивных переменных. Сезон, для которого значения всех фиктивных переменных равны нулю, принимается за базу сравнения. Для остальных сезонов одна из фиктивных переменных принимает значение, равное единице. Если имеются поквартальные данные, то значения фиктивных переменных D1, D2, D3 будут принимать следующие значения для каждого из кварталов


Квартал


D2


D3


D4

1

0

0

0

2

1

0

0

3

0

1

0

4

0

0

1



Общий вид регрессионной модели с переменной структурой в данном случае будет иметь вид:

yt=β0 +β1 ×t+δ2 ×D2 +δ3 ×D3 +δ4 ×D4 t

Построенная модель регрессии является разновидностью аддитивной модели временного ряда. Базисным уравнением исследуемой регрессионной зависимости будет являться уравнение тренда для первого квартала:

y =β +β ×t

Тогда общий вид модели регрессии с переменной структурой будет иметь вид:

yt=β0+ β1*t+δ2*D2+δ3*D3+δ4*D4+εt.

Данная модель регрессии представляет собой одну из разновидностей аддитивной модели временного ряда.

На основе общей модели регрессии с переменной структурой можно составить базисную модель или модель тренда для первого квартала:

yt=β0+ β1*t+εt.

Также на основе общей модели регрессии с переменной структурой можно составить частные модели регрессии:

1) частная модель регрессии для второго квартала:

yt=β0+ β1*t+δ2+εt;

2) частная модель регрессии для третьего квартала:

yt=β0+ β1*t+δ3+εt;

3) частная модель регрессии для четвёртого квартала:

yt=β0+ β1*t+δ4+εt.

Данные частные модели регрессии отличаются друг от друга только на величину свободного члена δi.

Коэффициент β1 характеризует среднее абсолютное изменение уровней временного ряда под влиянием основной тенденции.

Сезонная компонента для каждого сезона рассчитывается как разность между средним значением свободных членов всех частных моделей регрессий и значением постоянного члена одной из моделей.

Среднее значение свободных членов всех частных моделей регрессий рассчитывается по формуле:

http://lib.rus.ec/i/68/257268/_20090526_00255.png

Для поквартальных данных оценка сезонных отклонений осуществляется по формулам:

1) оценка сезонного отклонения для первого квартала:

http://lib.rus.ec/i/68/257268/_20090526_00256.png

2) оценка сезонного отклонения для второго квартала:

http://lib.rus.ec/i/68/257268/_20090526_00257.png

3) оценка сезонного отклонения для третьего квартала:

http://lib.rus.ec/i/68/257268/_20090526_00258.png

4) оценка сезонного отклонения для четвёртого квартала:

http://lib.rus.ec/i/68/257268/_20090526_00259.png

Сумма сезонных отклонений должна равняться нулю.
49. Принципы спецификации эконометрических моделей и их формы

Первый принцип спецификации эконометрической модели является универсальным принципом метода математического моделирования. Принцип заключается в том, что спецификация модели возникает в результате трансляции на математический язык взаимосвязей исходных данных экономической задачи (экзогенных переменных модели) и ее искомых неизвестных (эндогенных переменных модели). В процессе такой такой трансляции опираются на законы экономической теории, которые, по возможности, стараются описать линейными алгебраическими функциями.

Второй принцип требует, чтобы количество уравнений, составляющих спецификацию модели, в точности совпадало с количеством эндогенных переменных, включенных в модель.

Модель, возникающая на этапе спецификации, как правило, имеет структурную форму, отражающую заложенные в модель экономические утверждения. В такой форме эндогенные переменные модели, как правило, не выражены явно через ее экзогенные переменные. При помощи алгебраических преобразований модель от структурной формы может быть трансформирована к приведенной форме, где каждая эндогенная переменная представляется в виде явной функции только экзогенных переменных модели. Приведенная форма модели непосредственно предназначена для прогноза (объяснения) эндогенных переменных при помощи экзогенных переменных. В частном случае структурная форма модели может совпадать с приведенной формой.

50. Проблема мультиколлинеарности в моделях множественной регрессии. Признаки мультиколлинеарности

Множественная регрессия позволяет построить и проверить модель линейной связи между зависимой (эндогенной) и несколькими независимыми (экзогенными) переменными: y = f(x1,...,xр ), где у - зависимая переменная (результативный признак); х1,...,хр - независимые переменные (факторы).

Множественная линейная регрессионная модель имеет вид:

y=a+b1x1+b2x2+…+bpxp+ε

Факторы, включаемые во множественную регрессию, должны отвечать следующим требованиям:

1. быть количественно измеримы. При включении качественного фактора нужно придать ему количественную определенность

2. не должны быть коррелированы между собой и тем более и годиться в точной функциональной связи.

Включение в модель факторов с высокой интеркорреляцией, когда ryx1 < rx1x2 может повлечь за собой неустойчивость и ненадежность оценок коэффициентов регрессии.

Поскольку одним из условий построения уравнения множественной регрессии является независимость действия факторов, коллинеарность факторов нарушает это условие. Если факторы явно коллинеарны, то они дублируют друг друга и один из них рекомендуется исключить из регрессии. Предпочтение при этом отдается фактору, который при достаточно тесной связи с результатом имеет наименьшую тесноту связи с другими факторами.

Признаки мультиколлинеарности.

1.В модели с двумя переменными одним из признаков мультиколлинеарности является близкое к единице значение коэффициента парной корреляции. Если значение хотя бы одного из коэффициентов парной корреляции больше, чем 0,8, то мультиколлинеарность представляет собой серьезную проблему.

Однако в модели с числом независимых переменных больше двух, парный коэффициент корреляции может принимать небольшое значение даже в случае наличия мультиколлинеарности. В этом случае лучше рассматривать частные коэффициенты корреляции.

2. Для проверки мультиколлинеарности можно рассмотреть детерминант матрицы коэффициентов парной корреляции |r|. Этот детерминант называется детерминантом корреляции |r| ∈(0; 1). Если |r| = 0, то существует полная мультиколлинеарность. Если |r|=1, то мультиколлинеарность отсутствует. Чем ближе |r| к нулю, тем более вероятно наличие мультиколлинеарности.

3. Если оценки имеют большие стандартные ошибки, невысокую значимость, но модель в целом значима (имеет высокий коэффициент детерминации), то это свидетельствует о наличие мультиколлинеарности.

4. Если введение в модель новой независимой переменной приводит к существенному изменению оценок параметров и небольшому изменению коэффициента детерминации, то новая переменная находится в линейной зависимости от остальных переменных

51. Прогнозирование экономических переменных. Проверка адекватности модели

Экономическое прогнозирование (ЭП) - это процесс разработки экономических прогнозов, основанных на научных методах познания экономических явлений и использования всей совокупности методов, средств и способов экономической прогностики.

Рассмотрим две переменные x и y, где y - зависимая переменная (регрессант, эндогенная переменная), x – независимая переменная (регрессор, экзогенная переменная). Функция y = f(Х*) называется функцией регрессии у по Х, если она описывает изменение условного среднего значения результирующей переменной у в зависимости от изменения переменных Х. Соотношение между переменными будем обозначать: y = f (x).

f(X) = E(y| X).

В регрессионной анализе результирующая переменная у может быть рассмотрена как функция, значения которой можно определить, используя значения объясняющих переменных Х = (х(1), х(2),…, х(k)). Математически это можно записать в виде уравнения регрессионной зависимости

у(Х)=f(Х)+ε(X),

E(ε(X))= 0.

Здесь ε(Х) – случайная составляющая. Она отражает влияние на фактор у, не учтенных в модели объясняющих переменных Х, а также включает в себя возможные случайные погрешности измерения объясняемой переменной у. E(ε(X))= 0 при любом фиксированном значении Х.

Сложность экономических процессов и явлений затрудняют проверку их адекватности, истинности получаемых результатов.

Модель именуется адекватной, если прогнозы значений эндогенной переменной согласуются с её наблюденными значениями.

В целом для проверки адекватности модели используются различные тесты, например Коэффициент детерминации, F-тест, Тест Стьюдента, Ошибка аппроксимации, Тест Дарбина- Уотсона и тест Голфелда-Квандта.

Тест Голфелда-Квандта предназначен для проверки предпосылки теоремы Гаусса-Маркова о гомоскедастичности случайных возмущений в уравнениях наблюдений, т.е. о том, что Var(u1)=Var(u2)=….=Var(un)=σ2

Тест Дарбина-Уотсона. Этот тест предназначен для проверки третьей Cov(ui;uj)=0 при i≠j. Часто истинной причиной неадекватности предпосылки оказывается ошибка в выборе уравнения регрессии в спецификации модели. Данный тест является одним из наиболее важных тестов в эконометрике.

Ошибка аппроксимации. Величина отклонений фактических и расчетных значений результативного признака ( y-ˆyx) по каждому признаку представляет собой ошибку аппроксимации (ОА). Чтобы иметь общее суждение о качестве модели из относительных отклонений по каждому наблюдению, находят среднюю ОА как среднюю арифметическую простую.

или , где n-число наблюдений

F-тест - оценивание качества уравнения регрессии - состоит в проверке гипотезы Н0 о статистической незначимости уравнения регрессии и показателя тесноты связи. Для этого выполняется сравнение фактического Fфакт и критического (табличного) Fтабл значений F-критерия Фишера. Fфакт определяется как

F= (R2/k)/((1-R2)/n-k-1)= ESS/k)/(RSS/n-k-1), где n — число единиц совокупности; m - число параметров при переменных х

Если Fтабл<Fфакт, то Н0 - гипотеза о случайной природе оцениваемых характеристик отклоняется и признается их статистическая значимость и надежность. Если Fтабл>Fфакт, то гипотеза Н0 не отклоняется и признается статистическая незначимость, ненадежность уравнения регрессии.
Тест Стьюдента. Отношение коэффициента регрессии к его стандартной ошибке дает t-статистику, которая подчиняется статистике Стьюдента при (n-2) степенях свободы. Эта статистика применяется для проверки статистической значимости коэффициента регрессии и для расчета его доверительного интервала.

Фактическое значение t-критерия Стьюдента определяется как



53.Регрессионные модели с фиктивными переменными.

Термин “фиктивные переменные” используется как противоположность “значащим” переменным, показывающим уровень количественного показателя, принимающего значения из непрерывного интервала. Как правило, фиктивная переменная — это индикаторная переменная, отражающая качественную характеристику. Чаще всего применяются бинарные фиктивные переменные, принимающие два значения, 0 и 1, в зависимости от определенного условия. Например, в результате опроса группы людей 0 может означать, что опрашиваемый - мужчина, а 1 - женщина.

Рассмотрим модель регрессии, характеризующую зависимость переменной размера заработной платы у от переменной стажа работников х с различным образованием. Качественная переменная «образование» может принимать три значения: среднее, среднее специальное и высшее. Для включения факторной переменной «образование» в модель регрессии, необходимо ввести две новых фиктивных переменных, потому что их количество должно быть на единицу меньше, чем значений качественной переменной.

Следовательно, качественная переменная «образование» может быть представлена в виде:

_20090526_00196

Модель регрессии, характеризующая зависимость переменной размера заработной платы у от переменной стажа работников х с различным образованием, примет вид: y=β0+β1x+β2D1+ β3D2.

Моделью регрессии без ограничений называется модель регрессии, в которую включены все фиктивные переменные. Базисной моделью или регрессией с ограничениями называется модель регрессии, в которой все значения фиктивных переменных равны нулю.

54.Свойства временных рядов

Временной ряд – это датированная целочисленными моментами времени t экономическая переменная . Эта переменная служит количественной характеристикой некоторого экономического объекта, поэтому изменение этой переменной во времени определяется факторами, оказывающими воздействие на данный объект с ходом времени. Все факторы делятся на 3 класса.

1 класс: факторы («вековые» воздействия), результирующее влияние которых на данный объект на протяжении длительного отрезка времени не изменяют своего направления. Они порождают монотонную составляющую (тенденцию или тренд).

2 класс: факторы (циклические воздействия), результирующее влияние которых на объект совершает законченный круг в течение некоторого фиксированного промежутка времени T.

3 класс: факторы (случайные воздействия),результирующее влияние которых на объект с высокой скоростью меняет направление и интенсивность.

3 Класс факторов позволяют интерпретировать величину в каждый период времени как случайную переменную. Закон распределения этой переменной зависит от переменной времени t , т.е. . Следовательно, от переменной времени t зависят и основные количественные характеристики временного ряда : .

55.Составление спецификации модели временного ряда.

Временной ряд - это совокупность значений какого-либо показателя за несколько последовательных моментов или периодов. Модели, построенные по данным, характеризующим один объект за ряд последовательных моментов (периодов), называются моделями временных рядов.

Каждый уровень временного ряда формируется из трендовой(T), циклической(S) и случайной (Е) компонент. Модели, в которых временной ряд представлен как сумма перечисленных компонент, - аддитивные модели, как произведение -мультипликативные модели временного ряда. Аддитивная модель имеет вид: Y = Т + S + Е; мультипликативная модель: Y=T* S • Е, где Т- тренд, S- сезонная составляющая, Е – случайная составляющая .

Построение моделивключает следующие шаги:

  1. выравнивание исходного ряда методом скользящей средней;

  2. расчет значений сезонной компоненты S;

  3. устранение сезонной компоненты из исходных уровней ряда и получение выровненных данных в аддитивной (Т + Е) или в мультипликативной (Т * Е) модели;

  4. аналитическое выравнивание уровней (Т + Е) или (Т * Е) и расчет значений Т с использованием полученного уравнения тренда;

  5. расчет полученных по модели значений (T + S) или (Т * S);

  6. расчет абсолютных и/или относительных ошибок.

Построение аналитической функции для моделирования тенденции (тренда) временного ряда называют аналитическим выравниванием временного ряда.

Параметры трендов определяются обычным МНК, в качестве независимой переменной выступает время t = 1, 2, ..., п, а в качестве зависимой переменной - фактические уровни временного ряда уt.

Критерием отбора наилучшей формы тренда является наибольшее значение скорректированного коэффициента детерминации R2.
1   2   3   4   5


написать администратору сайта