Главная страница
Навигация по странице:

  • Индуктивный датчик

  • Эл.учебник Шелухин начало. Автоматизация и механизация сортировочных


    Скачать 3.04 Mb.
    НазваниеАвтоматизация и механизация сортировочных
    Дата17.02.2023
    Размер3.04 Mb.
    Формат файлаdoc
    Имя файлаЭл.учебник Шелухин начало.doc
    ТипУчебник
    #941474
    страница4 из 7
    1   2   3   4   5   6   7
    ГЛАВА 3. Напольные датчики горочных систем автоматизации

    3.1. Индуктивные датчики

    Магнитоиндукционный датчик педального типа

    Широкое применение на железнодорожном транспорте нашли датчики магнитоиндукционного типа. Бесконтактная магнитная педаль типа ПБМ-56 представляет собой путевой датчик без ис­точника питания, состоящий из постоянного магнита размером 60x68x80 мм с насаженной на него обмоткой, имеющей 5000 вит­ков из провода ПЭЛШО диаметром 0,27 мм. Сопротивление об­мотки 300 Ом. Датчик устанавливают на рельс внутри колеи. Верх­нюю плоскость магнита располагают на 10 мм ниже головки рель­са. При прохождении колеса или другой ферромагнитной массы над педалью изменяется конфигурация магнитного потока Ф, в результате чего в обмотке индуцируется ЭДС — Е:
    E= ­- ω dФ/dt

    Скорость прохождения колеса над педалью определяет скорость изменения магнитного потока (dФ/dt) и, следовательно, зна­чение выходного сигнала Е. В момент проследования колеса над центром педали выходной сигнал меняет полярность.

    Приемником сигнала от педали является поляризованное реле РП-7 в релейной ячейке РЯ-ПБМ-56 (рис. 3.1).

    Опыт эксплуатации датчиков ПБМ-56 на сортировочных гор­ках показал их невысокую надежность. Причинами отказов этих датчиков являются:

    вибрация рельсов; напрессовка снега и льда; механические повреж­дения; влияние магнитных полей тяговых двигателей; климатичес-

    Р
    ис. 3.1. Педальный датчик ПБМ-56

    кие факторы. Существенные недостатки датчика — это низкая чув­ствительность, зависящая от скорости движения отцепа; низкая помехозащищенность от токов в рельсовых линиях.

    Более совершенным считается путевой датчик трансформаторного типа ДП-50 с преобразователем сигнала путевого датчика ПСДП-50 (рис. 3.2). Принципиальной особенностью этого датчика является возможность фиксации нулевых скоростей движения ТС. Чувстви­тельный элемент датчика состоит из двух стержневых магнитопроводов. На них надеты катушки с питающими обмотками ωпс, ωпк, соединенными последовательно, и катушки с выходными обмотка­ми ωвс и ωвк, которые включены последовательно и встречно.

    При подаче переменного напряжения на питающие обмотки создаются сигнальный Фс и компенсационный Фк магнитные потоки. В отсутствие колеса над датчиком потоки замыкаются по цепям: поток Фс -— через сигнальный магнитопровод, воздушные промежутки, головку рельса; поток Фк — через компенсационный магнитопровод, воздушные промежутки, подошву рельса.

    В отрегулированном датчике эти потоки одинаковы и по амп­литуде и по фазе, следовательно, ЭДС, индуцируемые в выходных обмотках, будут одинаковыми, а выходное напряжение на зажи­мах 3—4 равно нулю.

    При появлении реборды колеса над датчиком воздушные про­межутки сигнального стержня уменьшаются. В результате увеличи­вается ЭДС, наводимая в обмотке ωвс. На выходе возникает раз­ность ЭДС, являющаяся сигналом наличия колеса в зоне датчика. Сигнал передается по кабелю на вход преобразователя ПСДП-50.

    Преобразователь имеет: конденсатор С1; разделительный транс­форматор Тр; выпрямительный мост Д1—Д4; сглаживающий кон­денсатор С2; пороговый элемент на транзисторах Т1 и Т2.

    Рис. 3.3 Датчик трансформаторного типа
    Если на входе преобразователя сигнала нет. то транзистор Т1 открыт положительным потенциалом отделителя, образуемого резисторами R2 и R3. При увеличении сигнала до величины поро­га срабатывания ток транзистора Т1 скачкообразно уменьшается, а транзистор Т2 открывается, выдавая выходной сигнал. В этом состоянии преобразователь находится до тех пор, пока входное напряжение не уменьшится до напряжения отпускания.

    Пороговый элемент срабатывает при напряжении 1,2—1,3 В, а обесточивается при напряжении 0,5—0,6 В. Изменение зоны чув­ствительности датчика существенно зависит от ориентации датчи­ка в горизонтальной и вертикальной плоскостях, от износа рельса и проката бандажа.
    Индуктивный датчик

    Индуктивный датчик (ИД), называемый также датчиком счета осей колесных пар (УСО), представляет собой многоконтурный обнаружитель, позволяющий реализовать не только функции об­наружения транспортного средства, но и фиксировать направле­ние движения вагона. ИД состоит из двух частей: собственно пер­вичного датчика, состоящего из трех катушек индуктивности, размещаемых в одном корпусе, который закрепляется на рель­се, и преобразователя сигналов (ПС), размещаемого в напольном ящике вблизи пути (рис. 3.3).

    Датчик предназначен для фиксации осей вагонов, следующих по участку, ограниченному ИД, и передачи информации на управ-
    Рис. 3.3. Индуктивный датчик




    ляющии вычислительный комплекс, размещаемый на посту элект­рической централизации.

    Электропитание ИД осуществляется от сети переменного тока частотой 50 Гц, напряжением (36+4) В. Потребляемый ток не бо­лее 0,05 А.

    Функциональная схема датчика представлена на рис. 3.4. Пер­вичный преобразователь датчика представляет собой совокупность трех катушек индуктивности без сердечника КИ1, КИ2, КИЗ, раз­мещаемых в специальном конструктиве, который прикрепляется непосредственно к рельсу. Причем, две катушки КИ1 и КИЗ, назо­вем их рабочими, располагаются в корпусе горизонтально, их плос­кости намотки параллельны рельсу, а третья, вспомогательная, находится между ними, и ее плоскость перпендикулярна плоско­сти других катушек индуктивности. Вследствие этого преобразо­ватель сигнала датчика строится по трехканальной схеме. Два ра­бочих канала ПС выполняют функции счетчиков осей движущего­ся вагона. Они практически симметричны и включают резонанс­ные каскады РК1 и РК2, компараторы сигналов К1 и К2, дискрет­ные делители частоты сигнала Д2 и Д4, каскады оптоэлектрокной развязки ОР1 и ОРЗ, индикаторы состояния каналов И1 и ИЗ, вы­ходные цепи передачи сигналов на пост ЭЦ —- ВЫХ.Сч1 и ВЫХ.Сч2. Третий канал выполняет в основном функции контроля работоспособности датчика, главным образом в части наличия первичного преобразователя, закрепленного на рельсе, и включа­ет в себя те же функциональные узлы, что и основные каналы. Вы­ходной сигнал вспомогательного канала представляет собой диск­ретный сигнал частотой 1 Гц, транслируемый на пост ЭЦ с выхода «Контроль исправности». В преобразователе сигналов имеется ав­тогенератор опорного сигнала с кварцевой стабилизацией частоты.

    Ориентация катушек индуктивности датчика такова, что колес­ные пары вагона поочередно проезжают над катушкой КИ1, а затем над катушкой КИЗ в одном направлении либо наоборот при обрат­ном движении. В момент проезда колесной пары над соответствую­щей катушкой регистрируется сигнал с соответствующего счетного выхода одного из каналов Сч1 или Сч2. При этом в случае регистра­ции равенства въехавших и выехавших осей через счетную точку, принимается решение о наличии либо отсутствии транспортного





    средства в зоне контроля. Помимо названной функции датчик по­зволяет фиксировать и направление движения транспортного сред­ства в зависимости от очередности во времени появления счетных импульсов с выхода первой или второй катушек КИ1, КИЗ.

    В исходном состоянии с выхода кварцевого генератора в каж­дый канал ПС датчика через делитель Д1 на вход резонансных кас­кадов РК1, РК2, РКЗ поступает сигнал опорной частоты.

    Резонансные контуры каскадов образованы индуктивностя­ми катушек КИ1, КИ2, КИЗ и собственными емкостями, которы­ми в процессе установки и настройки датчика подстраивают кон­туры в резонанс или вблизи него. Эти сигналы с выходов резо­нансных каналов поступают на соответствующие компараторы, выполняющие функции пороговых элементов, и при достаточ­ном уровне сигнала транслируются через делители частоты Д2, ДЗ, Д4, каскады оптоэлектронной развязки ОР одновременно на встроенные индикаторы И1, И2, ИЗ и на соответствующие выхо­ды в линию связи.

    Таким образом в исходном состоянии на каждом счетном вы­ходе Вых.Сч1 и Вых.Сч2 как и на контрольном, в линию на пост ЭЦ передаются переменные дискретные сигналы, свидетельствую­щие о работоспособном состоянии датчика и отсутствии колесных пар вагона в зоне действия датчика. Одновременно в ПС светятся индикаторы И, один из которых мигает — И2 с частотой 1Гц. Эта индикация предназначена для контроля функционирования датчи­ка электромехаником.

    При въезде колесной пары вагона в зону действия одной из катушек, например КИ1, изменяется начальная настройка резонанс­ного контура РК1. Напряжение на его выходе, подаваемое на вход компаратора KI, уменьшается до величины, приводящей к его зак­рытию. Вследствие этого пропадает импульсный сигнал на счет­ном выходе Вых.Сч1, гаснет индикатор И1, что свидетельствует о наличии колесной пары вагона в зоне К1. При выезде колесной пары из зоны действия катушки КИ1, настройка резонансного кон­тура РК1 восстанавливается, напряжение на входе компаратора К1 открывает его, и на выходе этого канала возобновляется трансля­ция переменного дискретного сигнала. Аналогично функциониру­ет и другой рабочий канал, образованный катушкой КИЗ.


    На посту ЭЦ в управляющем вычислительном комплексе ве­дется обработка поступающих с датчиков сигналов по алгоритму счета осей колесных пар, определению направления движения от­цепа, занятости или свободное™ контролируемого участка. Сле­дует заметить, что работа вспомогательного канала, регистриру­ющего исправное состояние датчика, не прекращается и при въез­де колесной пары в зону его действия благодаря начальной настрой­ке функциональных узлов компаратора.
    Датчик индуктивно-проводной (ИПД) предназначен для эксплу­атации на объектах железнодорожного транспорта и служит для определения свободности или занятости подвижным составом кон­трольного участка железнодорожного пути. ИПД рекомендован для замены педалей и рельсовых цепей на стрелочных участках сорти­ровочных горок, оборудованных системой ГАЦ (рис. 3.5). В систе­мах горочной автоматической централизации ИПД служит допол­нительным элементом защиты стрелок от несанкционированного перевода при потере шунта и проходе длиннобазных вагонов.

    ИПД обеспечивает контроль свободности или занятости участ­ков пути в пределах уложенного шлейфа от подвижного состава с металлической ходовой частью.

    В состав ИПД входит аппаратура, располагающаяся в зависи­мости от функционального назначения в релейном помещении или на поле. В релейном помещении находятся предохранители в цепях




    Рис. 3.5. Индуктивно-проводной датчик (ИПД)


    питания датчика и реле типа НМШ2-4000, воспринимающие сигналы от электронного блока (ЭБ). Электронный блок поме­щен в трансформаторный ящик, установленный непосредственно у контролируемого участка пути. Входная часть ЭБ связана с ин­дуктивным шлейфом (ИШ). Он располагается внутри железнодо­рожной колеи в пределах контролируемого участка и крепится к шейке рельсов, изготавливается на месте установки и содержит катушку индуктивности, образованную из 7 жил кабеля КВВГ 7х 1.5 (рис. 3.6). Концы кабеля заводятся в путевой ящик (рис. 3.7), где жилы кабеля распределяются на клемной колодке в катушку ин­дуктивности. Шлейф крепится к подошве рельсов при помощи кре­пежных скоб (см. рис. 3.6).

    Для защиты от механических повреждений кабель помещен в резинотканевый рукав. Длина шлейфа выбирается от конкретной длины предстрелочного участка. ИШ должен крепиться к шейке рельсов в каждом шпальном ящике, в местах установки накладок шлейф должен крепиться скобами к каждой шпале.

    Принцип контроля подвижного состава основан на изменении частоты и амплитуды генератора гармонических колебаний датчи­ка под действием металлической массы вагона (рис. 3.8). Индуктив­ный шлейф является чувствительным элементом датчика, выполня­ющего роль индуктивности колебательного контура генератора.

    Если контролируемый участок пути свободен, генератор гар­монических колебаний выдает на вход порогового устройства (ком-




    паратор 1) сигнальную частоту (синусоидальной формы установлен­ной частоты и амплитуды). При этом пороговое устройство форми­рует сигнал управления выходным каскадом, и на выход ЭБ в на­грузку поступает сигнал постоянного тока напряжением примерно 24 В на нагрузке 1440 Ом. При занятости контролируемого участка это напряжение уменьшается до величины, не превышающей 2,4 В.

    Начало контролируемого участка датчика соответствует «наезду» первой колесной пары отцепа на ИШ и срабатыванию датчика. Конец контрольного участка соответствует «съезду» последней колесной пары отцепа с изолирующих стыков стрелки и восстановлению работы дат­чика. Структурная схема ИПД представлена на рис. 3.8.

    При занятости контролируемого участка уменьшается доброт­ность колебательного контура датчика, уменьшается амплитуда сигнальной частоты либо происходит полный срыв колебаний, что приводит к формированию компаратором 1 сигнала управления выходным каскадом, при этом выходной сигнал на нагрузке будет отсутствовать, и светодиод «Выход» не будет светиться.

    ЭБ состоит из следующих узлов: генератора гармонических колеба­ний; контрольной схемы; схемы автоподстройки; выходного каскада.

    Сигналом с выхода компаратора 1 дается разрешение на рабо­ту схемы автоподстройки и контрольной схемы при свободном





    Рис. 3.8. Структурная схема ИПД

    участке пути. При этом на выходе ЭБ формируется напряжение постоянного тока +24 В. При занятом участке работа схемы авто­подстройки и контрольной схемы блокируются, и выходной сиг­нал при этом будет отсутствовать.

    В реальных условиях на рамку ИШ действует не только металли­ческая масса вагона, но и климатические факторы (в частности, влаж­ность). В результате амплитуда колебаний генератора датчика может изменяться, в то время как порог срабатывания датчикаостается по­стоянным. Это может привести либо к «пропуску» базы вагона, либо к выдаче ложного сигнала занятости. Поэтомув преобразователе дат­чика реализована схема стабилизации амплитуды колебаний генера-
    тора датчика. Эту функцию выполняет схема автоподстройки. Прин­цип ее действия основан на том, что в цепь ООС генератора введено регулирующее звено, которое изменяет глубину ООС в зависимости от изменения амплитуды колебаний в ИШ генератора датчика.

    Регулирующее звено состоит из цифроаналогового преобра­зователя (ЦАП), работающего в следящем режиме.

    Выходной сигнал генератора гармонических колебаний поступает на вход ЦАП и 3-Й компаратор. На 2-ой компаратор подается опор­ное напряжение, которое и определяет величину выходного сигнала на выходе генератора. Если сигнал на входе компаратора вышеопор­ного, то на его выходе формируется сигнал, дающий команду на вы­читание числа в реверсивном счетчике. При этом сигнал с выхода ЦАП увеличит уровень ООС генератора и сигнал на его выходе уменьшит­ся. Уменьшение сигнала будет происходить до тех пор, пока он не станет меньше Uоп4. После этого на выходе компаратора формирует­ся сигнал, дающий команду на сложение числа в реверсивномсчетчи­ке. В этом случае сигнал с выхода ЦАП уменьшает величину ООС генератора и сигнал на его выходе увеличивается.

    Напряжение на входе компаратора возрастает на величину Uс/2n, где п -— число разрядов ЦАП, и компаратор вновь даст ко­манду на вычитание. С каждым следующим тактом компаратор будет выдавать команду либо на сложение, либона вычитание, а величина выходного сигнала — синхронно изменяться.

    Схема автоподстройки и контрольная схема с выходным кас­кадом расположены на модуле ЭМ2 электронного блока датчика.

    Для контроля работоспособности ИПДэлектронный блок имеет контрольную схему, которая выдает сигнал об исправности, если величина сигнала в контрольной точкеКГ, определяющая работоспособность ИПД, не превышает заданной величины.

    Для обеспечения условия безопасности работы ИПД конт­рольная схема ЭБ работает в импульсном режиме. Электронный блок выдает напряжение постоянного тока +24 В, которое питает исполнительное реле. Контроль работоспособности ИПД осуще­ствляется визуально светодиодом «Выход».

    Конструктивно-электронный блок представляет собой объемную конструкцию, внутри которойрасположены две съемные печатные платы. На одной плате (модуль ЭМ1) — источник питания, генера-


    Рис. 3.9. Схема включения датчика ИПД в устройства ГАЦ

    тор синусоидальных колебаний и генератор импульсов, а на второй (модуль ЭМ2) — элементы схемы автоподстройки контрольной схе­мы (схема выходного каскада). На верхних панелях помещены эле­менты настройки и индикации, вывод контрольной точки.

    Электронный блок устанавливается внутри путевого ящика на металлическое основание. Выводы ЭБ, а также внешних цепей и цепи питания, крепятся на клеммной колодке внутри путевого ящи­ка. На рис. 3.9 показана схема подключения ИПД в цепь управле­ния стрелочным приводом.





    Рис.3.10. Магнитный датчик
    Помимо рассмотренных датчиков индуктивного типа в эксплуатации встречаются и магнитные датчики типов ДМ 88М, ДМ 88С, ШМП 93 (рис. 3.10), предназначенные для счёта осей и формирования «пусковых» сигналов вместо педального датчика ПБМ-56.
    1   2   3   4   5   6   7


    написать администратору сайта