Билет 1 Принципы классификации протеиногенных аминокислот
Скачать 168.69 Kb.
|
1. Белки. Химическая природа: состав, уровни структурной организации и типы связей. 2. Кетоновые тела: представители, механизм их образования в норме, значение. Причины кетонемии (кетонурии): условия активации образования кетоновых тел, возможные последствия. 3.Виды первичных коагулопатий (название, причины возникновения). 4. Перечислить процессы, в которых участвует витамин С. Ответ: 1) стр. 9 2) Кетоновые тела — группа органических соединений, являющихся промежуточными продуктами жирового, углеводного и белкового обменов. К кетоновым телам относят b-оксимасляную и ацетоуксусную кислоты и ацетон. Количество их в условиях нормы невелико. Появление повышенных количеств К. т. в крови и моче является важным диагностическим признаком, свидетельствующим о нарушении углеводного и жирового обменов. Главным путем синтеза К. т., происходящего в основном в печени, считается реакция конденсации между двумя молекулами ацетил-КоА, образовавшегося при b-окислении жирных кислот или при окислительном декарбоксилировании пирувата (пировиноградной кислоты) в процессе обмена глюкозы и ряда аминокислот. Этот путь синтеза К. т. более других зависит от характера питания и в большей степени страдает при патологических нарушениях обмена веществ. Из печени К. т. поступают в кровь и с нею во все остальные органы и ткани, где они включаются в цикл трикарбоновых кислот, в котором окисляются до углекислоты и воды. К. т. используются также для синтеза холестерина, высших жирных кислот, фосфолипидов изаменимых аминокислот. Кетонемия - повышенное содержание в крови кетоновых тел. Возникает такое состояние при тяжёлой форме сахарного диабета или голодании. Обнаружение кетоновых тел в моче называют - кетонурия. В норме кетоновые тела в моче не обнаруживаются, так как ежедневно выводятся из организма органами выделения. К причинам накапливания в моче кетоновых тел относятся многие причины, некоторые из них несут угрозу нормальной жизнедеятельности организма. Вот одни из причин:
При голодании в крови падает концентрация глюкозы, а при диабете глюкоза не поступает в клетку с необходимой скоростью. В результате начинается усиленный липолиз для высвобождения необходимой энергии. Мобилизованные жировые кислоты направляются из жировых депо в печень, где и образуются кетоновые тела. Пока их количество в пределах нормы, периферические ткани успевают произвести их окисление и получить таким образом недостающую энергию. При превышении нормы скорости окисления не хватает, и кетоны накапливаются в кровотоке. При голодании, однообразном безуглеводистом питании и при недостаточной секреции инсулина использование ацетил-КоА в цикле трикарбоновых кислот подавляется, т.к. все метаболически доступные ресурсы организма превращаются в глюкозу крови. В этих условиях увеличивается синтез К. т. Введение с пищей углеводов тормозит образование К. т. Инсулин стимулирует синтез жирных кислот из ацетил-КоА и активирует использование последнего в цикле трикарбоновых кислот, в результате чего снижается интенсивность синтеза К. т. При обнаружении кетоновых тел в моче при сахарном диабете, медики говорят о переходе заболевания в более тяжелую стадию. Очень большое содержание в моче ацетона и уксусной кислоты при сахарном диабете, свидетельствует о приближении состояния гипергликемической комы у больного. 3) 4) Основная функция витамина С – донор водорода в ОВР. Участвует в превращениях ароматических кислот, ведущих к образованию некоторых медиаторов, в синтезе кортикостероидов, в кроветворении и в формировании коллагена. Кроме того участвует в обмене железа: в кишечнике обеспечивает восстановление 3валентного в 2валентное – это обязательное условие всасывания железа. Билет 5
По составу белки можно разделить на простые и сложные, первые содержат в молекуле только аминокислоты, вторые — еще и другие структуры (добавочные или простетические группы). Простые белки по растворимости и пространственному строению разделяют на глобулярные и фибриллярные. Глобулярные белки отличаются шарообразной формой молекулы (эллипсоид вращения), растворимы в воде и в разбавленных солевых растворах. Хорошая растворимость объясняется локализацией на поверхности глобулы заряженных аминокислотных остатков, окруженных гидратной оболочкой, что обеспечивает хороший контакт с растворителем. К этой группе относятся все ферменты и большинство других биологически активных белков, исключая структурные. Среди глобулярных белков можно выделить' 1) альбумины — растворимы в воде в широком интервале рН (от 4 до 8,5), осаждаются 70-100%-ным раствором сульфата аммония; 2) полифункциональные глобулины с большей молекулярной массой, труднее растворимы в воде, растворимы в солевых растворах, часто содержат углеводную часть; 3) гистоны — низкомолекулярные белки с высоким содержанием в молекуле остатков аргинина и лизина, что обусловливает их основные свойства; 4) протамины отличаются еще более высоким содержанием аргинина (до 85%), как и гистоны, образуют устойчивые ассоциаты с нуклеиновыми кислотами, выступают как регуляторные и репрессорные белки — составная часть нуклеопротеинов; 5) проламины характеризуются высоким содержанием глутаминовой кислоты (30-45%) и пролина (до 15%), нерастворимы в воде, растворяются в 50-90%—яом этаноле; 6) глутелины содержат около 45% глутаминовой кислоты, как и проламины, чаще содержатся в белках злаков. Фибриллярные белки характеризуются волокнистой структурой, практически не растворимы в воде и солевых растворах. Полипептидные цепи в молекулах расположены параллельно одна другой. Участвуют в образовании, структурных элементов соединительной ткани (коллагены, кератины, эластины). Сложные белки (протеиды) содержат наряду с протеиногенными аминокислотами органический или неорганический компонент иной природы — простетическую группу. Она связана с полипептидной цепью ковалентно, гетеропо-лярно или координационно. Важнейшие представители: гликопротеины (нейтральные сахара, аминосахара, кислые производные моносахаридов), липопротеины (триацилглицериды, фосфолипиды и холестерол), металлопротеины (ион металла, связанный ионной или координационной связью), фосфопротеины (остатки фосфорной кислоты, связанные через остаток серина или треонина), нуклеопротеины (нуклеиновые кислоты), хромопротеины (окрашенный компонент — пигмент или хромоген). Важнейший хромопротеид — гемоглобин. Нуклеопротеиды — соединения, молекула которых состоит из простого белка и нуклеиновой кислоты: дезоксирибонуклеиновой (ДНК) или рибонуклеиновой (РНК). ДНК — неразветвленный полимер, образованный из связанных между собой нуклеотидов, содержащих дезоксирибозу. Нуклеотид включает одно из четырех азотистых оснований (аденин (А), тимин (Т), гуанин (Г) или цитозин (Ц), остаток рибозы и фосфорной кислоты (Р). Нуклеотиды в полимере соединены между собой через остаток фосфорной кислоты, образующей эфирную связь с С-3 в остатке рибозы предшествующего нуклеотида . Для ДНК всех видов клеток характерно равенство между количеством остатков аденина и тимина (А = Т), гуанина и цитозина (Г = Ц) — правил Чаргаффа, т.е. число пуриновых оснований равно числу пиримидиновыз Отношение А + Т к Г + Ц варьирует у разных видов в широких пределах -от 0,35 до 2,70. Относительно друг друга цепи расположены так, что пуриновому основанию в одной из них соответствует пиримидиновое основание в другой. Эти основания комплементарны друг к другу, т.е. пространственно взаимодополняют одна другую. В молекуле основания связаны водородными мостиками' двумя между А и Т и тремя — между Ц и Г . ДНК ядра животных клеток представляет собой не одну молекулу, а состоит из многих, распределенных по разным (у человека по 46) хромосомам. Как уже сказано, по первичной структуре, т.е. набору нуклеотидов, во всех клетках организма ДНК совершенно одинакова, в том числе и в специализированных клетках, но отличается по характеру белкового компонента. РНК в отличие от ДНК, которая находится преимущественно в ядре, содержится в основном в цитоплазме, главным образом в рибосомах (это определяет их название), в небольшом количестве — в ядрах, главным образом — ядрышках. Сходна по первичной структуре с ДНК, отличаясь следующим: 1) вместо дезоксирибозы содержит рибозу; 2) вместо тимина — урацил (тимин присутствует в очень малых количествах). Как и ДНК, РНК — это полимерная цепь, построенная по аналогичному Принципу, не обладает строгой упорядоченностью вторичной структуры (спи-рализованные участки менее протяженны, чем в ДНК, местами образует петли, на протяжении которых азотистые основания связаны водородными мостиками по принципу комп-лементарности в пределах одной цепи (рис.13). В отличие от ДНК рибонуклеиновые кислоты разнообразны. Наиболее тяжелые происходят из рибосом — рибосомные РНК. Внутри растворимой клеточной фракции содержится растворимая РНК или транспортная (функциональное название). Третья разновидность — информационные РНК. Рибосомные РНК (р-РНК) связаны с белками рибосомы, представленными десятками разновидностей в пределах одной и той же рибосомы. Гемоглобин (НЬ) — важнейший хромопротеид, обладающий уникальной функцией — перенос кислорода и углекислоты. Белковый компонент НЬ — глобин, небелковый — гем. Структура НЬ неодинакова у разных видов и может иметь варианты у одного вида или одной особи. Отличия касаются белковой части — последовательности аминокислот. Структура гема идентична у всех позвоночных. Молекула глобина содержит четыре полипептидные цепи, которые удерживаются вместе нековалентными связями. Гемоглобин А — основной гемоглобин взрослого человека— состоит из двух видов поли-пептидных цепей — а и р. О разновидностям гемоглобина, связанных с вариантами структуры глобина, мы будем говорить ниже. Последовательности аминокислот в НЬА (вообще в гемоглобине 20 видов животных) расшифрованы полностью Гем — молекула, построенная из четырех гетероциклов, содержащих азот — пиррольных колец. Остатки пиррола соединены в молекуле гема по а-углеродным атомам метиновыми мостиками (-СН=), [3-углеродные атомы замещены в пиррольных кольцах метильными группами (4), винильными {2) и остатками пропионовой кислоты (2). С атомами азота пиррольных колец в геме связан ион двувалентного железа. Кроме того, железо взаимодействует с атомом азота в остатках гистидина (Гис 87 а-субъединицы, Гис 92 [3-субъединицы). С белковой частью молекулы гем связан еще и электростатическим взаимодействием через пропиониловые остатки. Со стороны белка в этих связях участвуют остатки основных аминокислот (лизин, аргинин). 2. Этапы превращения фибриногена в фибрин, роль фактора Х111 и плазмина. 3. Катаболизм гема, локализация процесса, конечный продукт. Обезвреживание и выведение билирубина. 131 Разрушение гемоглобина происходит в такой последовательности:
Высвободившееся железо поступает в костный мозг. Неэстерифицированный билирубин – свободный или непрямой. Эстерифицированный – связанный или прямой. Превращения связанного билирубина. Связанный билирубин ->желчь - >кишечник - > мезобилиноген - > удаление в виде стеркобилиногена с каловыми массами - > всасывание в кровоток -> 1)портальная система – гепатоциты – желчь – кишечник (в виде дипирролов) – выделение с каловыми массами или всасывание в кровоток 2) общий кровоток – выделение с мочой в виде уробилиногена. 4. Какие признаки позволяют отнести биологически активное вещество к классу витаминов, к витаминоподобным соединениям? 134, 142 Билет 6
Денатурация белка — следствие разрыва слабых связей, ведущего к разрушению вторичной и третичной структур. Молекула денатурированного белка неупорядоченна — она приобретает характер случайного («статистического») клубка. Как правило, денатурация белка необратима, но в некоторых случаях после устранения денатурирующего агента может произойти «ренатурация» — восстановление вторичной и третичной структур, а следовательно, и свойств. Денатурирующие агенты' высокие температуры (разрыв водородных и гидрофобных связей), кислоты и основания (нарушение электростатических связей), органические растворители (нарушение преимущественно гидрофобных связей), мочевина и гуанидин (нарушение водородных связей). К денатурирующим агентам относятся также детергенты, соли тяжелых металлов, ультрафиолет и другие виды излучений. Денатурация не нарушает ковалентных связей, но повышает их доступность для других факторов, в частности для энзимов, 2.Описать взаимодействие вазопрессина, альдостерона и натрийуретического гормона в регуляции параметров внеклеточной жидкости. Осмотическое давление и объем внеклеточной жидкости контролируется гормонами, для которых орган – мишень – почки: вазапрессином и альдостероном, натрийуретическим гормоном. Вазопрессин секретируется окончаниями аксонов в нейрогипофизе. Активирует гиалуронидазу, что ускоряет гидролиз гиалуроновой кислоты и увеличивает проницаемость эпителия канальцев. В результате возрастает реабсорбция воды и конечная моча становится более концентрированной. Задержка воды приводит к разбавлению солей в водных сегментах организма, снижению осмотического давления – исчезает раздражитель осморецепторов. Альдостерон секретируют надпочечники. Ускорение его секреции происходит при снижении концентрации натрия в крови(одновременно падает и концентрация ионов хлора). Накопление натрия в жидкостях ведет к росту осмотического давления, что стимулирует секрецию вазопрессина, увеличивающего задержку воды. Секреция альдостерона контролируется главным образом системой ренинангиотензин. Снижение давления в артериолах стимулирует секрецию ренина. Натрийуретический гормон, секретируемый клетками предсердия – пептид, усиливающий фильтрующую способность клубочка, что сопровождается увеличением объема мочи без изменения концетрации в ней натрия. Секреция гормона стимулирует рост артериального давления 3. Источники свободных жирных кислот крови, их дальнейшая судьба (описать пути метаболизма). 4. Назвать последовательные превращения 7-гидрохолестерола в активную форму витамина Д. 7 –дегидрохолестерол – предшественник витамина Д (кальциферол) 7 – дегидрохолестерол под возд. УФ-лучи - > холекальциферол (вит Д3) -> в печень –гидроксилирование в 25 положении -> 25 гидроксихолекальциферол -> в транспорт в почки: - >гидроксилируется в 1 -> 1, 25 дигидрооксихолекальциферол (активная форма – контролируется паратгормоном околощитовидной железы) - > слизистая оболочка кишечника -> белок предшественник в кальций связывающий белок - > ускоряется связывание ионов Са+ из просвета кишечника – ускоряется реабсорбция Са в почечных канальцах. Билет 7
Растворимость белков в воде Многие белки хорошо растворимы в воде, что определяется количеством полярных групп. Растворимость глобулярных молекул лучше, чем фибриллярных белков. Факторы, определяющие стабильность белковых растворов: - наличие зарядов в белковой молекуле. Одноименные заряды способствуют растворимости белка, т.к. препятствуют соединению молекул и выпадению в осадок. - Наличие ГИДРАТНОЙ оболочки, препятствующей объединению белковых молекул. Для осаждения белка, его необходимо лишить этих двух факторов устойчивости. Методом осаждения белка является вливание - осаждение белка с помощью нейтральных солей - (NH4)2-S04. В полунасыщенном растворе (NH4)2-SO4 осаждаются глобулины, а в насыщенном - альбумины. После удаления осаждающего фактора, белки переходят в растворённое состояние. Белки — амфотерные полиэлектролиты, т. е. подобно аминокислотам они обладают кислотными и основными свойствами. Эти свойства белка обусловлены электрохимической природой R-радикалов аминокислот, входящих в состав белка. Амфотерная природа белков обусловливает определенную буферность их растворов. Однако при физиологических значениях рН она невелика. Исключение составляют белки, содержащие большое количество гистидина. каждый белок при каком-то определенном значении рН будет иметь суммарный электрический заряд, равный нулю; такое состояние белка называется изоэлектрическим состоянием, а величина рН, обусловливающая это состояние, называется изоэлектрической точкой (ИЭТ). В этой точке белок не обладает подвижностью в электрическом поле; имеет наименьшую растворимость в воде; белковые растворы обладают минимальной устойчивостью и минимальным осмотическим давлением. метод электрофореза. Он основан на передвижении заряженной частицы в электрическом поле. Движение частицы происходит в жидкой среде, которая удерживается инертным твердым носителем, например полоской бумаги, гелевой пленкой из крахмала, опарой, полиакриламидами, декстраном, ацетатом целлюлозы, что позволяет существенно снизить диффузию фракционируемых белков в отличие от электрофореза в водной среде. Жидкость же служит проводящей средой для электрического поля, когда к ней приложено внешнее напряжение. Подвижность заряженной молекулы в электрическом поле называется электрофоретической подвижностью. Денатурация белка — следствие разрыва слабых связей, ведущего к разрушению вторичной и третичной структур. Молекула денатурированного белка неупорядоченна — она приобретает характер случайного («статистического») клубка. Как правило, денатурация белка необратима, но в некоторых случаях после устранения денатурирующего агента может произойти «ренатурация» — восстановление вторичной и третичной структур, а следовательно, и свойств. Денатурирующие агенты' высокие температуры (разрыв водородных и гидрофобных связей), кислоты и основания (нарушение электростатических связей), органические растворители (нарушение преимущественно гидрофобных связей), мочевина и гуанидин (нарушение водородных связей). К денатурирующим агентам относятся также детергенты, соли тяжелых металлов, ультрафиолет и другие виды излучений. Денатурация не нарушает ковалентных связей, но повышает их доступность для других факторов, в частности для энзимов,
Объем внеклеточной жидкости зависит от общих концентраций белка в плазме крови и содержания натрия в организме. Следовательно, контролируется теми же двумя гормонами, а кроме того, и так называемым третьим фактором — натрийуретическим гормоном, количество которого растет при увеличении объема плазмы. Гормон повышает скорость выделения натрия, ограничивая его реабсорбцию в канальцах, и, значит, уменьшает реабсорбцию воды (вторично). Если пренебречь значением рН и составом водных сегментов, можно выделить шесть состояний, характеризующихся изменением осмотического давления и (или) объема внеклеточной жидкости, изменением содержания натрия в плазме крови и скорости его выделения с мочой. Дегидратация гипотоническая развивается при потере соли, не сопровождающейся адекватной потерей воды. Это происходит при снижении реабсорбции натрия в полиурическую фазу почечной недостаточности, рвоте, диарее, введении диуретиков, церебральном синдроме солепотери, при гипоальдосте-ронизме. Уменьшение объема внеклеточной жидкости, сгущение крови и повышение ее вязкости уменьшает эффективность работы сердца и ведет к гипотонии. При гипоальдостеронизме, обусловленном недостаточностью коркового слоя надпочечников, и при отсутствии терапии нарушается секреция клубочками ионов водорода и аммонийных ионов. В сыворотке повышается концентрация ионов калия и происходит перемещение бикарбонатов в клетки, а ионов водорода — во внеклеточную жидкость. В итоге развивается ацидоз. Дегидратация изотоническая может наблюдаться при аномально увеличенном выведении натрия, чаще всего — с секретом желез желудочно-кишечного тракта. Потеря этих изотонических жидкостей не ведет к изменению внутриклеточного объема (все потери — за счет внеклеточного). Их причины — повторная рвота, поносы, потеря через фистулу, формирование больших транссудатов (асцит, плевральный выпот), крово-плазмопотери при ожогах, перитонитах, панкреатитах. Дегидратация изотоническая может наблюдаться при аномально увеличенном выведении натрия, чаще всего — с секретом желез желудочно-кишечного тракта (изоосмотические секреты, суточный объем которых составляет до 6з /о к объему всей внеклеточной жидкости). Потеря этих изотонических жидкостей не ведет к изменению внутриклеточного объема (все потери — за счет внеклеточного). Их причины — повторная рвота, поносы, потеря через фистулу, формирование больших транссудатов (асцит, плевральный выпот), крово-плазмопотери при ожогах, перитонитах, панкреатитах. Дегидратация гепертоническая связана с потерей воды без соответствующей потери натрия. Это может наблюдаться у лиц, не имеющих доступа к воде; оставленных без ухода больных, не реагирующих на ощущение жажды; после аномально большого выделения воды без последующей компенсации; у больных с несахарным и сахарным диабетом; при центральных расстройствах осморегуляции (опухоли мозга, черепно-мозговая травма). К этому же может привести солевая интоксикация (избыток хлорида натрия алиментарного и ятрогенного происхождения). Гипергидратация гипотоническая, или водная интоксикация, обуславливается избыточным поступлением бессолевых жидкостей, нарушением выведения жидкости из-за почечной недостаточности или неадекватной секреции антидиуретического гормона (синдром Шварца-Бартера). В частности, это можно наблюдать у больных, которым вводят большой объем раствора глюкозы при нарушенной выделительной функции почек. Вода накапливается равномерно во всех водных сегментах, следствие чего — гипонатриемия и гипоосмолярность. Гипергидратация изотоническая представляет собой увеличение внеклеточного объема жидкости без нарушения осмотического давления. Такое состояние может быть результатом сердечной недостаточности (увеличивается объем крови без нарушения осмолярности), гипопротеинемии при нефротическом синдроме, когда объем крови остается постоянным за счет перемещения жидкой части в интерстициальный сегмент (появляются пальпируемые отеки конечностей, может развиться отек легких). Последнее может явиться тяжким осложнением, связанным с парентеральным введением жидкости в терапевтических целях. Гипергидратация гипертоническая проявляется увеличением объема жидкости во внеклеточном пространстве с одновременным ростом осмотического давления за счет гипернатриемии и обезвоживанием клеток. Механизм развития нарушения таков' задержка натрия не сопровождается задержкой воды в адекватном объеме, внеклеточная жидкость оказывается гипертонической, и вода из клеток движется во внеклеточные пространства до момента осмотического равновесия. Причины нарушения многообразны: синдром Кона или Кушинга, питье морской воды, черепно-мозговая травма. Если состояние сохраняется долго, может наступить гибель в связи с повреждением клеток центральной нервной системы.
Глюконеогенез — синтез глюкозы из неуглеводных предшественников. Основные из предшественников — пируват и лактат, промежуточные — метаболиты ЦТК, глюкогенные (глюкопластичные) аминокислоты и глицерин. Узловая точка синтеза глюкозы — превращение пирувата в фосфоенолпи-руват (ФЕП). Пируват карбоксилируется пируваткарбоксилазой за счет энергии АТФ, реакция осуществляется в митохондриях' СН,-СО-СООН + СО, ——————————————» НООС-СН.-СО-СООН Пируват АТФ АДФ + (Р) Оксалоацетат Затем происходит фосфорилирующее декарбоксилирование, катализируемое фосфоенолпируваткарбоксикиназой: НООС-СН-СО-СООН + ГТФ ——— НС=С-СООН + ГДФ + СОд Оксалоацетат Дальнейший путь образования Г-6-Ф представляет собой обратный путь гликолиза, катализируемый теми же ферментами, но в обратном направлении. Исключение составляет только превращение фруктозо-1,6-дифосфата в фрук-тозо-6-фосфат, катализируемое фруктозодифосфатазой Ряд аминокислот (аспарагин, аспарагиновая кислота, тирозин, фенилаланин, треонин, валин, метионин, изолейцин, глутамин, пролин, гистидин и аргинин) тем или иным путем превращаются в метаболит ЦТК - фумаровую кислоту, а последняя — в оксалоацетат. Другие (аланин, серии, цистин и глицин) — в пируват. Частично аспарагин и аспарагиновая кислота превращаются непосредственно в оксалоацетат. Глицерин вливается в процессы глюконеогенеза на стадии 3-ФГА, лактат окисляется в пируват. Глюкоза поступает из кишечника в клетки, где подвергается фосфорилированию с образованием Г-6-Ф. Он может превращаться по одному из четырех путей' в свободную глюкозу; в глюкозо-1 -фосфат, использующийся в синтезе гликогена; вовлекается в основной путь, где происходит ее распад до СО, с высвобождением энергии, запасаемой в форме АТФ, либо до лактата; вовлекаться в ПФП, где осуществляются синтез НАДФ • Нд, служащего источником водорода для восстановительных синтезов, и образование рибозо-5-фосфата, используемого в синтезе ДНК и РНК. Запасается глюкоза в форме гликогена, откладывающегося в печени, мышцах, почках. При расходовании гликогена в связи с интенсивными энерготратами или отсутствием углеводов в питании, содержание глюкозы и гликогена может пополняться за счет синтеза из неуглеводных компонентов метаболизма, т.е. путем глюконеогенеза. 4. Почему при механической желтухе снижается свертывание крови? Желчь не поступает в кишечник, нет эмульгирования жиров, не поступает жирорастворимые витамины, витамин К –жирораст витамин, зависимый фактор свертывания, поэтому снижается свертывание крови. Билет 8 1.Ферменты: биологическая роль; химическая природа; структурно-функциональная организация. Типы коферментов, примеры. 2. Врожденные нарушения обмена моносахаридов (галактоземия, эссенциальная фруктоземия и наследственная непереносимость фруктозы). Химизм, молекулярные дефекты, биохимические сдвиги, возможные последствия. 3. Витамин К. Важнейшие источники, процессы в которых он участвует, возможные причины гиповитаминоза, биохимические сдвиги при гиповитаминозе. 4. Назовите азотистые основания фосфатидов и основные представители фосфатидов тканей человека. Их значение. Ответ: 1) Ферменты – это биологические катализаторы белковой природы. Все ферменты при воздействии на них денатурирующими агентами теряют свои нативные свойства и функциональную активность. Свойства ферментов: 1-ферменты увеличивают скорость реакции, но не расходуются в процессе реакции. 2-ферменты высокоспецифичные по отношению к субстрату. Некоторые катализируют превращение единственного субстрата, а некоторые вообще только одного из стереоизомеров субстрата. 3-активность ферментов, т.е. способность в разной степени изменять скорость реакции. Это зависит от ряда факторов: температуры (ведет к снижению активности), рН, ионной силы и от концентрации реагирующих субстратов. С ростом концентрации скорость увеличивается лишь до определенного уровня – до концентрации насыщения, дальнейшее увеличение которой не сопровождается ростом скорости реакции. Номенклатура ферментов включает корень слова и окончание аза – тирозиназа. Классификация: Класс Оксидоредуктазы – катализируют ОВР Трансферазы – реакции межклеточного переноса (А-В + С = А + В-С) Гидролазы – реакции гидролитического расщепления =С-О- и др. связей Лиазы – реакции негидролитического расщепления с образованием 2х связей Изомеразы – реакции изменения геометрической или пространственной структуры молекулы Лигазы (синтетазы) – реакции соединения 2х молекул, сопровождающиеся гидролизом макроэргов. Коферменты – это вещества, необходимые некоторым ферментам для проявления активности. Они непосредственно участвуют в катализируемой ферментом химической реакции. Классификация: а) неорганические (ионы металлов, некоторые анионы) б) органические Ионы металлов – ионы кальция, магния, калия, цинка, железа. Они участвуют в: стабилизации третичной или четвертичной структуры, в связывании или катализе субстрата. Различают коферменты нуклеотидной природы, тетрапиррольные коферменты и коферменты – производные витаминов. Коферменты – нуклеотиды – в составе трансфераз участвуют в переносе фосфата, пирофосфата, аденилата, в превращениях сахаров. Тетрапиррольные коферменты идентичны гему в гемоглобине; участвуют в транспорте электронов в составе цитохромов, пероксидазы. Коферменты – витамины участвуют в разнообразных химических реакциях обмена. Например, коферментная форма витамина В1 (тиамина) – тиаминдифосфат, катализирует реакцию декарбоксилирования. 2) Галактоземия. Распад глюкозы происходит в печени, ткани мозга и клетках крови и протекает через следующие реакции: 1) галактоза под воздействием галактокиназы превращается в галактозо-1-фосфат 2) галактозо-1-фосфат + АТФ под воздействием галактозо-1-фосфатуридинтрансферазы = УДФ-галактоза +АДФ 3) УДФ-галактоза под воздействием галактозо-УДФ-эпимеразы = УДФ-глюкоза Соответственно из-за дефицита этих катализаторов и развивается это заболевание. Дефицит галактокиназы проявляется ухудшением зрения, вызванным образованием катаракт. В моче обнаруживается галактоза и сахарный спирт. Дефицит галактозо-1-фосфатуридинтрансферазы ведет к накоплению Г-1-Ф в кл. крови, печени, почках, мозге и хрусталике, к появлению в тканях сахарного спирта. Образуются катаракты. При кормлении галактозосдержащей пищей у ребенка развивается желтуха, диарея. Эссенциальная фруктозурия обусловлена недостаточностью фосфофруктокиназы, которая катализирует превращение фруктозы в фруктозо-1-фосфат. Фруктоза накапливается в крови и выделяется с мочой. Клинические проявления отсутствуют. Фруктозурию выявляют обычно при наличии гипергликемии и одновременном отсутствии в моче редуцирующих сахаров. Наследственная непереносимость фруктозы проявляется вслед за введением в рацион ребенка фруктов или соков, содержащих фруктозу или ее источник сахарозу. Заболевание связано с дефицитом фруктозо-1-фосфатальдолазы. Этот фермент катализирует расщепление фруктозо-1-фосфата до 3-ФГА, обеспечивая включение фруктозы в основной путь превращения глюкозы. В результате дефекта накапливается фруктозо-1-фосфат, развивается гипофосфатемия. Важнейшие лабораторные признаки заболевания: фруктоземия, фруктозурия и фруктозо-1-фосфатурия, а также лактатемия, гиперурикемия и гипогликемия после нагрузки фруктозой. 3) Витамин К – антигеморрагический фактор. Поступает в организм с растительной (капуста, фрукты) и животной (печень) пищей, а также стимулируется микрофлорой кишечника. Существует 2 ряда витамина К – филлохиноны К1-ряда и менахиноны – витамины К2-ряда. Первые содержатся в растениях, вторые синтезируются кишечными бактериями. Функционирует в качестве кофактора карбоксилирования остатков глутаминовой кислоты в некоторых белках свертывания крови. Витамин К участвует в активации факторов свертывания крови. Причина недостаточности вызвана нарушением образования его в кишечнике, или нарушением всасывания. Признаки авитаминоза – нарушение свертывающей системы крови, а значит сильные кровотечения. 4) Билет 9
Названия ферментов включает корень слова, отражающий характер катализируемой реакции или атакуемого субстрата, и окончание «аза» (тирозиназа – тирозин). Объединение ферментов в классы основано на типе катализируемых реакций. 1)Оксидоредуктазы – окисл-вост. реакции. 2)Трансферазы – реакции межмолекулярного переноса (A-B+C=A+B-C). 3)Гидролазы – реакции гидролитического расщепления =С - - О, =С - -N= и других связей. 4) Лиазы - реакции негидролитического расщепления с образованием двойных связей. 5) Изомеразы - реакции изменения геометрической или пространственной конфигурации молекулы. 6) Лигазы (синтетазы) – реакции соединения двух молекул, сопровождающиеся гидролизом макроэргов. Каждый из 6 классов делях на подклассы и подподклассы, уточняющие типы субстратов, переносимых группировок и другие детали.Каждый фермент обозначают шифром, включающим номер класса, подкласса, подподкласса, и номер фермента в подподклассе. Затем следует рациональное название (лактат: НАД-оксиредуктаза) и обычно употребляемое (лактатдегидрогеназа).
Определение содержания желчных пигментов в крови и моче позволяет установить уровень, на котором произошло нарушение их обмена, проявляющееся возникновением желтушного окрашивания кожных покровов и конъюк-тив — желтухой. Принимая во внимание три основных уровня, на которых осуществляется метаболизм гема, выделяют надпочечные, печеночные и подпеченочные желтухи. Надпочечная желтуха связана с ускоренным высвобождением гемоглобина из эритроцитов (интенсификация гемолиза), ведущим к избыточному образованию свободного билирубина. Характерны:
Печеночная желтуха связана с патологическими состояниями, при которых нарушаются: 1. Все три стадии обезвреживания свободного билирубина — элиминация из крови, конъюгирование и выведение. Изменяется содержание желчных пигментов в каловых массах. 2. Конъюгирование билирубина в связи с врожденным дефектом УДФ-глюкуронидтрансферазы. 3. Элиминация и транспорт билирубина гепатоцитом. 4. Выведение конъюгированного билирубина. Дефект УДФ-глюкуронидтрансферазы, (синдром Криглер-Найяра) проявляется в двух 'разных по тяжести формах. Форма I обусловлена полной блокадой фермента, характеризуется появлением желтухи с первых дней жизни ребенка, резким повышением содержания непрямого билирубина в крови, поражением центральной нервной системы. Выведение билирубина не нарушено, о чем можно судить по цвету фекалий. Концентрация билирубина в крови поддерживается на невысоком, но постоянном уровне. Больные отстают в физическом и психическом развитии, периодически изменяются показатели функциональных проб печени. Гипербилирубинемия превышает 20 мг% (обнаруживается только свободный билирубин). Форма II (синдром Люцей-Дрисколла) сопровождается неполной блокадой конъюгирования билирубина. Энзимдефект частично купируется введением индукторов ферментов, в частности фенобарбиталом. Дефект элиминации и транспорта неконъюгированного билирубина (синдром Жильберта-Мейленграхта) вызывается метаболическим нарушением транспорта билирубина из крови в гепатоцит по градиенту концентрации. Предположительная причина — генетический дефект белков соответствующей транспортной системы (альтерация протеинов У и 2). Заболевание обнаруживают чаще в юношеском и молодом возрасте, нередко в связи с инфекционным гепатитом или другими острыми инфекционными заболеваниями. Проявляется легкой перемежающейся желтухой, слабостью, диспептичес-кими явлениями, возможны боли в животе, небольшое увеличение размеров печени. Течение хроническое с обострениями, периодически наблюдается гипербилирубинемия с преимущественным присутствием свободного билиру- бина, активированы АСТ и АЛТ, сорбитолдегидрогеназа. Нарушение элиминации связанного билирубина (синдромы Дубина-Джонсона и Ротора) — конъюгация билирубина не нарушена, однако его глюкурониды не выводятся в печеночные ходы. Молекулярный механизм заболеваний неизвестен. Проявления: желтуха, сопровождающаяся накоплением в основном связанного билирубина, периодически небольшое изменение функциональных проб печени, диспептические явления, утомляемость, боли в животе. При синдроме Дубина-Джонсона в бромсульфалеиновой пробе через 45 мин после инъекции отмечают повышение содержания красителя в крови. При синдроме Ротора выведение краски замедлено, желчные пути не контрастируются даже при внутривенной холецистографии. Подведем итог: билирубинемия наблюдается во всех случаях печеночной желтухи; при синдромах Криглера-Найяра и Жильберта билирубинемия определена ростом содержания свободного билирубина; при синдроме Дубина-Джонсона и синдроме Ротора билирубинемия обусловлена связанным билирубином; синдром Криглера-Найяра отличается наличием признаков гемолиза (рост содержания свободного гемоглобина, снижение толерантности эритроцитов); для синдромов Дубина-Джонсона и Ротора характерны изменения бромсульфалеиновой пробы: в обоих случаях резко замедлена, в первом — после 45 мин наблюдается рост содержания краски в крови. В клинике существенно различать в первую очередь тип желтухи в зависимости от механизма возникновения: механическую (препятствия на пути движения желчи), паренхиматозную (связанную с нарушением функционирования печеночной паренхимы) и гемолитическую (обусловленную ускоренным распадом эритроцитов). Ниже представлены сопоставительные данные, позволяющие проводить дифференциацию этих форм желтухи (табл. 24). Нормальные значения биохимических показателей, используемых в диагностике печеночных заболеваний: АСТ — 0,1-0,45 мкмоль/(ч.мл) (определение по Райтману-Френкелю); АЛТ — 0,1-0,68 мкмоль/(ч.мл) (те же авторы); у-глутамилтранспептидаза — 250-1 767 нмоль/(с.л) — у мужчин и 167-1 100 нмоль/(с.л) — у женщин (унифицированный метод); щелочная фосфатаза — 278-830 нмоль/(с.л) (унифицированный метод с р-нитрофенилфосфатом); глутамат-дегидрогеназа — 3,48-21,0 мкмоль/(ч.л) (унифицированный метод Севела-Товарека); общий билирубин — 8,5-20,5 мкмоль/л сыворотки (по Ендрашику), из них 75% — на долю свободного; билирубин в моче в условиях нормы не обнаруживается (унифицированный метод — проба Розина); альбумин сыворотки крови — 35-50 г/л (унифицированный метод с бром-крезоловым синим). Функциональные пробы" 1. Тимоловая — от 0,0 до 4 ед, положительна — свыше 4 (по степени помутнения сыворотки в присутствии раствора тимола — унифицированный метод). 2. Сулемовая — 1,6-2,2 мл 0,1%-ного раствора сулемы на 0,5 мл сыворотки. Положительна при уменьшении объема раствора сулемы. 3. Вельтмана — 0,4-0,5 мл 0,5'^.ного раствора хлорида кальция. Положительна при образовании осадка с меньшим количеством раствора. 4. Нагрузка галактозой. Пациент получает орально 40 г галактозы в 250 мл воды. Пробы берут через 45 и 90 мин У здоровых людей через 90 мин концентрация галактозы в крови меньше, чем 1,39 ммоль/л, через 45 мин — меньше 0,84. Выделение галактозы с мочой длится при нормальной функции печени около 3 ч. Если за этот период выделяется более 3-4 г галактозы, можно думать о нарушении функции печени. 3. Назвать важнейшие источники витамина С, коферментную форму (если она известна), процессы в которых он участвует, биохимические сдвиги при гиповитаминозе. Витамин С, или аскорбиновая кислота. Не синтезируется в организме человека и должна поступать с пищей. Необходима для нормального усвоения глюкозы и образования запасов гликогена в печени. Участвует в синтезе стероидных гормонов, в регуляции свертываемости крови, в обмене тирозина. В спортивной медицине применяют для профилактики гиповитаминоза, для ускорения адаптации к новым климатическим условиям, а также для профилактики и лечения простудных иинфекционных заболеваний. Следует избегать, длительного применения в больших дозах. Целесообразно сочетание с рутином и витаминами группы В. Значительное количество аскорбиновой кислоты содержится в продуктах растительного происхождения (цитрусовые, овощи листовые зеленые, дыня, брокколи, брюссельская капуста, цветная и кочанная капуста, черная смородина, болгарский перец, земляника, помидоры, яблоки, абрикосы, персики, хурма, облепиха, шиповник, рябина, печеный картофель в 'мундире'). В продуктах животного происхождения - представлена незначительно (печень, надпочечники, почки) 4. Что называют рН – оптимумом, температурным оптимумом действия? То значение температуры, при котором данный фермент проявляет наибольшую активность – температурный оптимум. Билет 10 1. Механизм действия ферментов. Стадии ферментативных реакций. Значение образования фермент-субстратных комплексов в механизме ферментативного катализа. 2. Типы врожденных нарушений обмена аминокислот (гипераминоацидемия с гипераминоацидурией, врожденные нарушения транспорта аминокислот, вторичные аминоацидурии). 3.Биосинтез высших жирных кислот: необходимые компоненты, локализация процесса в клетке, регуляция, связь с катаболизмом углеводов. 4. От чего зависит, будет ли воспринята информация, доставленная сигнальной молекулой к клетке ОТВЕТЫ.
СХЕМАТИЧЕСКИ:
|