Главная страница
Навигация по странице:

  • Гормоны инсулин и глюкагон, строение, функции в организме.

  • Окислительное расщепление аминокислот – цикл мочевины. Каталитическая роль орнитина.

  • контрольная работа биосинтез белков. КР Биосинтез белков. Биосинтез белков (трансляция)


    Скачать 0.61 Mb.
    НазваниеБиосинтез белков (трансляция)
    Анкорконтрольная работа биосинтез белков
    Дата23.01.2020
    Размер0.61 Mb.
    Формат файлаdocx
    Имя файлаКР Биосинтез белков.docx
    ТипДокументы
    #105416
    страница4 из 4
    1   2   3   4

    Виды брожений. Субстраты и конечные продукты брожения.

    Брожение - процесс анаэробного расщепления органических веществ, преимущественно углеводов, происходящий под влиянием микроорганизмов или выделенных из них ферментов. В ходе брожения в результате сопряженных окислительно-восстановительных реакций освобождается энергия, необходимая для жизнедеятельности микроорганизмов, и образуются химические соединения, которые микроорганизмы используют для биосинтеза аминокислот, белков, органических кислот, жиров и другие компонентов тела. Одновременно накапливаются конечные продукты брожения. В зависимости от их характера различают брожения спиртовое, молочнокислое, маслянокислое, пропионовокислое, и другие виды.

    Спиртовое брожение. В 1836 г. французский ученый Каньяр де ла Тур установил, что спиртовое брожение связано с ростом и размножением дрожжей. Химическое уравнение спиртового брожения было дано французскими химиками А. Лавуазье (1789 г.) и Ж. Гей-Люссаком (1815 г.). Л. Пастер пришёл к выводу (1857 г.), что спиртовое брожение могут вызывать только живые дрожжи в анаэробных условиях. В противовес этому немецкий ученый Ю. Либих упорно настаивал на том, что брожение происходит вне живой клетки. На возможность бесклеточного спиртового брожения впервые (1871 г.) указала русский врач-биохимик М. М. Манассеина. Немецкий химик Э. Бухнер в 1897, отжав под большим давлением дрожжи, растёртые с кварцевым песком, получил бесклеточный сок, сбраживающий сахар с образованием спирта и CO2. При нагревании до 50 °C и выше сок утрачивал бродильные свойства. Все это указывало на ферментативную природу активного начала, содержащегося в дрожжевом соке. Русский химик Л. А. Иванов обнаружил (1905 г.), что добавленные к дрожжевому соку фосфаты в несколько раз повышают скорость брожения. Этот вид брожения имеет наибольшее народнохозяйственное значение.

    Спиртовое брожение есть процесс разложения сахара на спирт и углекислый газ. Оно протекает под действием микроорганизмов в виде следующей реакции:

    С6Н12О6 = 2С2Н5ОН + 2СО2 + 27 ккал

    Кроме этилового спирта и углекислого газа, при этом получаются также побочные продукты: уксусный альдегид, глицерин, сивушные масла, уксусная и янтарная кислоты и другие.

    Спиртовое брожение углеводов вызывается дрожжами, отдельными представителями мукоровых грибов и некоторыми бактериями. Однако грибы и бактерии вырабатывают спирта значительно меньше, чем дрожжи.

    Дрожжи в зависимости от условий брожения образуют разные количества продуктов брожения, среди них могут преобладать либо этиловый спирт и углекислота, либо глицерин и уксусная кислота.

    Брожение зависит не только от условий, в которых оно протекает, но также от вида и расы применяющихся дрожжей. К числу этих условий относятся концентрация сахара, кислотность среды, температура и количество накопившегося спирта.

    Наиболее благоприятная концентрация сахара в сбраживаемом субстрате для большинства дрожжей составляет около 15 %, при более высоких концентрациях брожение замедляется, а затем прекращается вовсе. Однако некоторые дрожжи могут вызывать брожение и при содержании в среде сахара свыше 60 %. При концентрации сахара в субстрате в количестве менее 10 % брожение протекает очень вяло.

    Нормальной для спиртового брожения является кислая среда с рН равным 4 или 4,5.

    В щелочной среде брожение протекает с образованием глицерина и уксусной кислоты.

    Наилучшая температура брожения находится в пределах от 28 °С до 32 °С. При более высоких температурах брожение замедляется, а при 50 °С оно прекращается. Понижение температуры снижает энергию брожения, хотя полностью оно не останавливается даже при 0 °С.

    Верховое брожение протекает очень энергично, с образованием на поверхности субстрата большого количества пены и с бурным выделением углекислого газа, потоками которого дрожжи выносятся в верхние слои субстрата. Дрожжи, вызывающие такое брожение, называются верховыми дрожжами. После окончания брожения они оседают на дно бродильных сосудов.

    Низовое брожение, вызываемое низовыми дрожжами, идет значительно спокойнее, с образованием небольшого количества пены. Углекислый газ выделяется постепенно и дрожжи остаются в нижнем слое сбраживаемого субстрата.

    Верховые дрожжи применяют для получения спирта и пекарских дрожжей, низовые - для производства вина и пива. Для получения вина и пива иногда используют и верховые дрожжи.

    Образующийся в процессе брожения спирт оказывает вредное воздействие на дрожжи. При накоплении в субстрате спирта более 16 % к объему самого субстрата брожение прекращается, а угнетающее действие образовавшегося спирта начинает проявляться уже при концентрации от 2 до 5 %. Некоторые же расы специально приученных дрожжей способны выдерживать весьма высокие концентрации спирта - до 25 %.

    Спиртовое брожение нормально протекает в анаэробных условиях, создающихся в процессе самого брожения. Но поскольку дрожжи являются факультативными анаэробами, они могут разлагать сахар и в аэробных условиях с образованием углекислого газа и воды. Замечено, что в условиях хорошей аэрации дрожжи усиленно размножаются. Поэтому при производстве пекарских дрожжей бродящий субстрат продувают воздухом.

    Для промышленного получения спирта в качестве сырья используют крахмалосодержащие продукты - картофель, зерновые культуры, а также отходы сахарного производства. В связи с тем, что дрожжи не способны сбраживать крахмал, его предварительно осахаривают с помощью солода, содержащего фермент амилазу. Солод получают из проросших зерен ячменя. В настоящее время для осахаривания применяют также грибной солод (грибы рода аспергиллус), который во многих отношениях является выгоднее ячменного солода. В результате осахаривания крахмала образуется дисахарид мальтоза - солодовый сахар.

    В среду культурных дрожжей, которые применяются в производстве, могут попадать посторонние микроорганизмы, вызывающие порчу продуктов. Так, дикие дрожжи нередко являются вредителями производства вина и пива. Они изменяют вкус и запах этих продуктов, вызывают их помутнение. Особенно опасны пленчатые дрожжи микодерма. Развиваясь в вине и пиве, они окисляют спирт до углекислоты и воды и придают напиткам неприятный вкус.

    Микодерма причиняет вред также при производстве пекарских дрожжей. Процесс получения пекарских дрожжей ведут с продуванием субстрата воздухом, так как это способствует их быстрому размножению. Микодерма в таких условиях развивается быстрее, чем настоящие дрожжи. Поскольку микодерма не обладает способностью поднимать тесто, то присутствие ее в культурных дрожжах резко снижает их пекарские свойства.

    Молочнокислое брожение. Молочнокислые бактерии подразделяют на 2 группы - гомоферментативные и гетероферментативные. Гомоферментативные бактерии (например, Lactobacillus delbrьckii) расщепляют моносахариды с образованием двух молекул молочной кислоты в соответствии с суммарным уравнением:

    C6H12O6 = 2CH3CHOH-COOH

    Гетероферментативные бактерии (например, Bacterium lactis aerogenes) ведут сбраживание с образованием молочной кислоты, уксусной кислоты, этилового спирта и CO2, а также образуют небольшое количество ароматических веществ - диацетила, эфиров и так далее.

    Молочнокислое брожение представляет собой разложение сахара под действием молочнокислых бактерий с образованием молочной кислоты. В общем суммарном виде его можно представить следующим уравнением:

    С6Н12О6 = 2С3Н6О3 + 18 ккал.

    Это брожение часто наблюдается в молоке и вызывает его скисание. Отсюда и получили свое название вид брожения, бактерии, вызывающие его, а также основной продукт брожения - кислота. Молочнокислые бактерии бывают шаровидной и палочковидной формы. Они неподвижны, спор не образуют и являются факультативными анаэробами.

    Различные виды молочнокислых бактерий в равных условиях продуцируют разное количество кислоты, что объясняется их неодинаковой кислотоустойчивостью. Палочковидные бактерии образуют больше кислоты, чем шаровидные (кокки).

    Молочнокислые бактерии способны сбраживать только моно- и дисахариды и совсем не сбраживают крахмал и другие полисахариды, так как не выделяют соответствующих ферментов.

    Некоторые из этих бактерий вырабатывают антибиотические вещества, действующие против возбудителей кишечных заболеваний.

    Наибольшее значение имеют следующие молочнокислые бактерии: молочнокислый стрептококк, болгарская, ацидофильная, сырная, дельбрюковская, огуречная, капустная палочки и другие.

    Молочнокислый стрептококк - соединенные попарно или в короткие цепочки шаровидные бактерии. Лучше всего развиваются при температуре от 30 °С до 35 °С, их температурный минимум около 10 °С. При брожении накапливают до 1 % кислоты. Широко применяются для приготовления молочнокислых продуктов (простокваши, кефира, сметаны, творога).

    Болгарская палочка нередко образует длинные цепочки, выделена из болгарской простокваши. Представляет собой неподвижную, бесспоровую палочку. Наилучшая для ее развития температура от 40 °С до 45 °С, температурный минимум 20 °С. В молоке образует до 3,5 % молочной кислоты.

    Ацидофильная палочка получена из выделений кишечника грудного ребенка. Имеет температурный оптимум около 40 °С, минимальная температура развития 20 °С. В молоке накапливает до 2,2 % молочной кислоты. Применяется для приготовления молочнокислых продуктов - ацидофилина и ацидофильного молока.

    При получении молочнокислых продуктов (простокваши, кефира, ацидофилина) в производственных условиях молоко предварительно подвергают пастеризации, а затем заквашивают специальными заквасками, содержащими культуры молочнокислых бактерий. Это дает возможность получать молочнокислые продукты определенного и высокого качества.

    Молочнокислое брожение в хлебопечении позволяет предотвратить развитие вредных бактерий в тесте, вызывающих картофельную болезнь (тягучесть) хлеба, а также способствует улучшению вкусовых свойств хлеба.

    При промышленном получении молочной кислоты в качестве сырья используют крахмал, патоку и другие сахаристые материалы. Молочную кислоту применяют в кондитерском производстве и в производстве безалкогольных напитков.

    Маслянокислое брожение. При маслянокислом брожении происходит процесс разложения сахара под действием бактерий в анаэробных условиях с образованием масляной кислоты, углекислого газа и водорода. Оно протекает по уравнению:

    С6Н12О6 = С3Н7СООН + 2СО2 + 2Н2 + 20 ккал

    В качестве побочных продуктов при этом получаются этиловый и бутиловый спирты, уксусная кислота и другие. Такое брожение может протекать в молоке и молочных продуктах, придавая им неприятные вкус и запах, характерные для масляной кислоты. Маслянокислые бактерии, вызывающие это брожение, представляют собой перитрихиально жгутованные подвижные, спорообразующие палочки, температурный оптимум их развития находится в пределах от 30 °С до 40 °С. Они являются строгими анаэробами и могут размножаться только при полном отсутствии кислорода воздуха или при очень незначительном его содержании. Споры, образуемые маслянокислыми бактериями, весьма устойчивы к неблагоприятным воздействиям, выдерживают кипячение в течение нескольких минут и погибают только при длительной стерилизации. Маслянокислые бактерии способны сбраживать как простые сахара, так и более сложные углеводы - крахмал, пектиновые вещества и другие, а также глицерин. Эти бактерии широко распространены в природе, находясь в почве, в иле озер, прудов и болот, в скоплениях различных остатков и отбросов, навозе, загрязненной воде, молоке, сыре и так далее. Вызываемое этими бактериями брожение имеет важное значение в превращениях веществ в природе.

    В народном хозяйстве маслянокислое брожение может принести большой вред, так как маслянокислые бактерии способны вызывать массовую гибель картофеля и овощей, прогоркание молока и вспучивание сыров, порчу консервов и так далее.

    Пропионовокислое брожение. Пропионовокислое брожение представляет собой процесс превращения сахара или молочной кислоты в пропионовую и уксусную кислоты с образованием углекислоты и воды:

    3C6H12О6 = 4С2Н5СООН + 2СН3СООН + 2СО2 + 2H2O

    Брожение вызывается пропионовокислыми бактериями. Это короткие, неподвижные, бесспоровые анаэробные палочки, оптимальная температура развития которых около 30 °С. Пропионовокислые бактерии близки к молочнокислым бактериям и нередко развиваются вместе с ними.

    Следует отметить, что пропионовокислому брожению могут подвергаться не только молочная кислота, но и ее соли. Это брожение имеет важное значение в созревании сыров. Молочная кислота (вернее, ее кальциевая соль), образующаяся в результате жизнедеятельности молочнокислых бактерий, под влиянием пропионовокислых бактерий превращается в пропионовую кислоту, уксусную кислоту и углекислый газ. Выделение углекислоты приводит к образованию глазков в сыре, придающих ему характерный ноздреватый рисунок. Пропионовая и уксусная кислоты способствуют образованию специфического сырного вкуса и запаха.

    Пропионовокислые бактерии используются также для получения витамина B12.

    Лимоннокислое брожение. При лимоннокислом брожении сахар под воздействием грибов окисляется в лимонную кислоту. Эту кислоту раньше получали из сока цитрусовых - лимонов и апельсинов. В настоящее время ее производят в основном путем брожения. В качестве возбудителя лимоннокислого брожения применяется гриб асспергиллус нигер.

    Сырьем для производства лимонной кислоты служит сахаросодержащий продукт - меласса. Мелассный раствор, включающий около 15 % сахара и необходимые грибу питательные вещества, разливают в плоские открытые сосуды и засевают спорами гриба. Сосуды помещают в бродильные камеры, которые хорошо проветривают. Процесс брожения продолжается от 6 до 8 дней при температуре около 30 °С.

    В последнее время начинают применять новый метод получения лимонной кислоты. При этом гриб находится не на поверхности сбраживаемого субстрата, а внедряется своим мицелием в толщу субстрата, который энергично насыщают воздухом. Такой способ ускоряет процесс накопления лимонной кислоты в сбраживаемом субстрате.

    Лимонная кислота находит широкое практическое применение, она используется, например, при изготовлении кондитерских и кулинарных изделий, безалкогольных напитков.



    1. Гормоны инсулин и глюкагон, строение, функции в организме.







    Инсулин

    Глюкагон

    Строение

    Представляет собой полипептид, состоящий из двух цепей А и В, связанных между собой дисульфидными мостиками, в инсулине человека 51 аминокислота и ММ 5,7 Д.


    Представляет собой полипептид, включающий 29 аминокислот с молекулярной массой 3,5 кДа и периодом полураспада 3-6 мин.


    Синтез

    Синтезируется в клетках поджелудочной железы в виде проинсулина, в этом виде он упаковывается в секреторные гранулы и уже здесь образуется инсулин и С-пептид.


    Осуществляется в клетках поджелудочной железы и в клетках тонкого кишечника.


    Регуляция синтеза и секреции


    Активируют синтез и секрецию:

    -глюкоза крови – главный регулятор, пороговая концентрация для секреции инсулина – 5,5 ммоль/л,

    -жирные кислоты и аминокислоты,

    -влияния n.vagus – находится под контролем гипоталамуса, активность которого опре-деляется концентрацией глюкозы крови,

    -гормоны ЖКТ: холецистокинин, секретин, гастрин, энтероглюкагон, желудочный ин-гибирующий полипептид,

    -хроническое воздействие гормона роста, глюкокортикоидов, эстрогенов, прогестинов.


    Уменьшают: глюкоза.


    Механизм действия

    После связывания инсулина с рецептором, активируется ферментативный домен рецеп-тора. Так как он обладает тирозинкиназной активностью, то фосфорилирует внутриклеточ-ные белки. Конечным эффектом является активация фосфатаз и дефосфорилирование "мета-болических" ферментов.

    Аденилатциклазный.




    6. Окислительное расщепление аминокислот – цикл мочевины.

    Каталитическая роль орнитина.
    Мочевина (карбамид) -- амид угольной кислоты, конечный продукт белкового обмена у уреотелических - животных и человека.

    В 30-х годах Г. Кребс подробно исследуя цепь реакций образования мочевины, нашел, что эта цепь имеет циклический характер и существенную роль в процессе играет орнитин. В связи с последним весь процесс биосинтеза мочевины получил название орнитинового цикла.

    Синтезируется мочевина в печени из СО2, аммиака и азота a-аминогрупп L-аспарагиновой кислоты в результате циклической последовательности биохимических реакций, получившей название цикла мочевины (цикл аргинина -- мочевины, орнитиновый цикл, цикл Кребса -- Хензелейта). В результате происходит обезвреживание токсического аммиака путем образования водорастворимой мочевины, выводимой из организма с мочой (пропорционально клубочковой фильтрации в почках).

    На первом этапе цикла мочевины происходит образование карбамоилфосфата из СО2 и аммиака, эту реакцию катализирует карбамоилфосфатсинтаза в присутствии М-ацетилглутамата. Второй этап -- биосинтез L-цитруллина из L-орнитина и карбамоилфосфата, катализируемый орнитинтранскарбамилазой. Третьим этапом цикла является синтез аргининянтарной кислоты из L-цитруллина и L-аспарагиновой кислоты, катализируемый аргининосукцинатсинтетазой. Четвертый этап -- превращение аргининянтарной кислоты в L-аргинин и фумаровую кислоту, катализируемое аргининсукциназой. На пятом, заключительном этапе цикла мочевины осуществляется гидролитическое расщепление L-аргинина под действием фермента аргиназы с образованием мочевины и L-орнитина, который служит субстратом для реакции второго этапа цикла мочевины.

    Цикл мочевины протекает в печени. Превращение L-орнитина в L-цитруллин и синтез карбамоилфосфата локализованы в матриксе митохондрий, а все другие реакции цикла -- в цитоплазме. Митохондрий клеток почек не содержат ферментов, необходимых для превращения L-орнитина в L-цитруллин и синтеза карбамоилфосфата. Однако в почках происходит синтез мочевины из цитруллина, поступающего из печени.

    При хронической почечной недостаточности, когда продукты азотистого обмена не выводятся из организма, токсичное действие на организм оказывает не безвредная мочевина, а совокупность более чем 200 других веществ.

    1   2   3   4


    написать администратору сайта