ответы к экзамену по ботанике. Ботаника2. Ботаника предмет, задачи, разделы
Скачать 178.19 Kb.
|
Эпителиальная ткань (эпителий) образует слой клеток, из которых состоят покровы тела и слизистые оболочки всех внутренних органов и полостей организма и некоторые железы. Через эпителиальную ткань происходит обмен веществ между организмом и окружающей средой. В эпителиальной ткани клетки очень близко прилегают друг к другу, межклеточного вещества мало. Таким образом создается препятствие для проникновения микробов, вредных веществ и надежная защита лежащих под эпителием тканей. В связи с тем, что эпителий постоянно подвергается разнообразным внешним воздействиям, его клетки погибают в больших количествах и заменяются новыми. Смена клеток происходит благодаря способности эпителиальных клеток и быстрому размножению. Различают несколько видов эпителия – кожный, кишечный, дыхательный. К производным кожного эпителия относятся ногти и волосы. Кишечный эпителий односложный. Он образует и железы. Это, например, поджелудочная железа, печень, слюнные, потовые железы и др. Выделяемые железами ферменты расщепляют питательные вещества. Продукты расщепления питательных веществ всасываются кишечным эпителием и попадают в кровеносные сосуды. Дыхательные пути выстланы мерцательным эпителием. Его клетки имеют обращенные кнаружи подвижные реснички. С их помощью удаляются из организма попавшие с воздухом твердые частицы. Соединительная ткань. Особенность соединительной ткани – это сильное развитие межклеточного вещества. Основными функциями соединительной ткани являются питательная и опорная. К соединительной ткани относятся кровь, лимфа, хрящевая, костная, жировая ткани. Кровь и лимфа состоят из жидкого межклеточного вещества и плавающих в нем клеток крови. Эти ткани обеспечивают связь между организмами, перенося различные газы и вещества. Волокнистая и соединительная ткань состоит из клеток, связанных друг с другом межклеточным веществом в виде волокон. Волокна могут лежать плотно и рыхло. Волокнистая соединительная ткань имеется во всех органах. На рыхлую соединительную ткань похожа и жировая ткань. Она богата клетками, которые наполнены жиром. В хрящевой ткани клетки крупные, межклеточное вещество упругое, плотное, содержит эластические и другие волокна. Хрящевой ткани много в суставах, между телами позвонков. Костная ткань состоит из костных пластинок, внутри которых лежат клетки. Клетки соединены друг с другом многочисленными тонкими отростками. Костная ткань отличается твердостью. Мышечная ткань. Эта ткань образована мышечными волокнами. В их цитоплазме находятся тончайшие нити, способные к сокращению. Выделяют гладкую и поперечно-полосатую мышечную ткань. Поперечно-полосатой ткань называется потому, что ее волокна имеют поперечную исчерченность, представляющую собой чередование светлых и темных участков. Гладкая мышечная ткань входит в состав стенок внутренних органов (желудок, кишки, мочевой пузырь, кровеносные сосуды). Поперечно-полосатая мышечная ткань подразделяется на скелетную и сердечную. Скелетная мышечная ткань состоит из волокон вытянутой формы, достигающих в длину 10–12 см. Сердечная мышечная ткань, так же как и скелетная, имеет поперечную исчерченность. Однако, в отличие от скелетной мышцы, здесь есть специальные участки, где мышечные волокна плотно смыкаются. Благодаря такому строению сокращение одного волокна быстро передается соседним. Это обеспечивает одновременность сокращения больших участков сердечной мышцы. Сокращение мышц имеет огромное значение. Сокращение скелетных мышц обеспечивает движение тела в пространстве и перемещение одних частей по отношению к другим. За счет гладких мышц происходит сокращение внутренних органов и изменение диаметра кровеносных сосудов. Нервная ткань. Структурной единицей нервной ткани является нервная клетка – нейрон. Нейрон состоит из тела и отростков. Тело нейрона может быть различной формы – овальной, звездчатой, многоугольной. Нейрон имеет одно ядро, располагающееся, как правило, в центре клетки. Большинство нейронов имеют короткие, толстые, сильно ветвящиеся вблизи тела отростки и длинные (до 1,5 м), и тонкие, и ветвящиеся только на самом конце отростки. Длинные отростки нервных клеток образуют нервные волокна. Основными свойствами нейрона является способность возбуждаться и способность проводить это возбуждение по нервным волокнам. В нервной ткани эти свойства особенно хорошо выражены, хотя характерны так же для мышц и желез. Возбуждение предается по нейрону и может передаваться связанным с ним другим нейронам или мышце, вызывая ее сокращение. Значение нервной ткани, образующей нервную систему, огромно. Нервная ткань не только входит в состав организма как его часть, но и обеспечивает объединение функций всех остальных частей организма. 22) Образовательные ткани. Общая характеристика ОБРАЗОВАТЕЛЬНЫЕ ТКАНИ(меристемы), ткани растений, состоящие из клеток, которые длительное время сохраняют способность к делению. Благодаря многократному делению этих клеток происходит рост растений в течение всей их жизни (у некоторых деревьев это сотни и даже тысячи лет). Второе важное свойство клеток меристем заключается в том, что они дают начало специализированным клеткам, образующим постоянные ткани – покровные, основные, проводящие, механические, выделительные. В зависимости от распределения на теле формирующегося растения выделяют четыре вида меристем. Верхушечные, или апикальные, меристемы обеспечивают рост побегов и корней в длину. Боковые, или латеральные, меристемы обусловливают нарастание стеблей и корней в толщину и называются камбием. Вставочные, или интеркалярные, меристемы временно сохраняются в междоузлиях стебля и в основаниях молодых листьев, обеспечивая рост этих участков, но затем превращаются в постоянные ткани. Раневые, или травматические, меристемы возникают в местах повреждения растения, где образуют защитный каллюс. Вопрос о том, каким образом из одинаковых меристематических клеток образуются различные ткани, т. е. как происходит клеточная дифференцировка, остаётся нерешённым. 23) Покровные ткани. Общая характеристика. Покро́вные тка́ни — наружные ткани растения. Покровные ткани предохраняют органы растения от высыхания, от температурных воздействий, механических повреждений, гифгрибов, болезнетворных бактерий и вирусов и других неблагоприятных воздействий окружающей среды. Осуществляют всасывание и выделение воды и других веществ. Через покровные ткани стебля осуществляется газообмен. В эпидерме он происходит через устьица. После образования перидермыэпидерма отмирает и слущивается, и газообмен идёт через чечевички. Часто эпидерма растений несёт различные образования: эмергенцы, кроющие и железистые волоски (трихомы), составляющие опушение растения. Классификация В зависимости от периода закладки выделяют следующие типы покровных тканей: первичные покровные ткани: в стебле это эпидерма, в корне — экзодерма (сверху молодой корень покрыт ризодермой (эпиблемой), она топографически соответствует эпидерме, но экзодерма и эпидерма не сопоставимы ни по происхождению, ни по форме клеток). вторичные покровные ткани: пробка, или феллема. Он имеется в стеблях древесных растений, в корнях двудольных и голосеменных, способных к вторичному утолщению. Вместе с феллогеном и феллодермой пробка входит в состав перидермы. дополнительная покровная ткань — корка (ритидом). 24) Механические ткани. Общая характеристика Механические ткани - это опорные ткани, придающие прочность органам растений. Они обеспечивают сопротивление статическим (сила тяжести) и динамическим (порывы ветра и т.п.) нагрузкам. Этим объясняется расположение тканей в органах растений, их тип и особенности клеток. В самых молодых участках растущих органов механических тканей нет, так как живые клетки в состоянии высокого тургора обусловливают их форму благодаря своим упругим оболочкам. По мере развития органов в них появляются специализированные механические ткани. Сочетаясь с другими тканями, они образуют как бы арматуру органа, поэтому их иногда называют арматурными. Механические ткани наиболее развиты в осевой части побега - стебле . Здесь они располагаются по его периферии: либо отдельными участками в гранях, либо сплошным цилиндром. Тем самым достигается наилучшее использование механических свойств ткани при изгибе органа. Напротив, в корне , который выдерживает главным образом сопротивление на разрыв, механическая ткань сосредоточена в центре. Механические ткани могут формироваться как в первичном, так и во вторичном теле растения. Наиболее заметная особенность клеток механических тканей - их значительно утолщенные оболочки, которые продолжают выполнять опорную функцию даже после отмирания их живого содержимого. Различают два основных типа механических тканей - колленхиму и склеренхиму . 25) Запасающие ткани. Общая характеристика В запасающих тканях откладываются избыточные в данный период развития растения продукты метаболизма: белки, углеводы, жиры и др. Обычно это паренхимные живые тонкостенные клетки, но иногда стенки клеток запасающих тканей утолщаются, и у них появляется дополнительная механическая функция. Запасающие ткани широко распространены у растений и имеются в самых различных органах. У семенных растений это обычно эндосперм или зародыш семян . Многолетние растения, кроме того, накапливают запасные вещества в клубнях , луковицах , утолщенных корнях , сердцевине стеблей . Местом хранения резервных веществ может быть также паренхима проводящих тканей . Запасающая ткань может превращаться в хлоренхиму . 26) Фотосинтезирующие ткани. Общая характеристика. Хлоре́нхима, или хлорофиллоно́сная паренхи́ма, — ассимиляционная (то есть осуществляющая синтез молекулярных компонентов клетки) ткань сосудистых растений, состоящая из паренхимных клеток, вдоль тонких стенок которых одним слоем располагаются хлоропласты, не затеняя друг друга. В некоторых руководствах ассимиляционную ткань рассматривают как разновидность основной паренхимы. Строение и функции Строение листовой пластинки. Показаны палисадная (сверху, плотно упакованные клетки) и губчатая (снизу, рыхло расположенные клетки) части мезофилла, расположенные между верхним и нижним эпидермальными слоями В разных органах размеры и форма клеток хлоренхимы неодинаковы. Наиболее разнообразна хлоренхима листьев — мезофилл. Хлоренхима, клетки которой имеют продолговатую форму, называется столбчатой, или палисадной, а состоящая из округлыхклеток с большими межклетниками — губчатой. Фотосинтетическая активность хлоренхимы листа пропорциональна числу находящихся в её клетках хлоропластов. Важное значение в структуре хлоренхимы играют межклетники — воздухоносные полости, — резко увеличивающие зелёный экран листа, то есть площадь соприкосновения клеток мезофилла с воздушной средой. Из воздухоносных полостей хлоренхимы в клетки поступает диоксид углерода, необходимый для фотосинтеза, а в них выделяется кислород. В некоторых случаях внутренняя поверхность хлоренхимы листа увеличивается за счёт образования многочисленных складок клеточных оболочек. Такая паренхима называется складчатой. Хлоренхима образуется также в молодых стеблях, органах цветка, плодах и залегает непосредственно под эпидермисом, что обеспечивает её хорошее освещение и газообмен. Хотя к фотосинтезу способны и другие ткани (например, эпидерма), у хлоренхимы эта функция главная и единственная. Обычно фотосинтезирующие ткани располагаются более или менее поверхносто, но иногда хлоренхима располагается в глубине стебля, вокруг пучков или более поверхностно, под механической тканью. В данном случае её функция, вероятно, связана со снабжением внутренних тканей стебля, в первую очередь живых клеток проводящих пучков, кислородом, который образуется в процессе дыхания. В редких случаях хлоренхима образуется и в корнях, доступных свету, — в корнях водных растений, в воздушных корнях. У некоторых моховидных (например, печёночника маршанции) на верхней стороне таллома образуются специальные структуры — камеры, со дна которых отходят цепочки хлорофиллоносных клеток. В наружной стенке камеры находится отверстие — дыхальце. Такую структуру называют ассимилятор[1]. 27) Всасывающие ткани. Общая характеристика Всасывающие ткани обеспечивают поступление в растение воды и растворенных в ней веществ. Они различны по структуре и распространению среди растений. Наиболее типична ризодерма – наружный слой клеток молодых корешков с корневыми волосками. Через него происходит всасывание воды и минеральных веществ. Остальные типы всасывающих тканей, как правило, связаны с определенными условиями или приурочены к какому-то таксону. Всасывающая ткань гаусторий (присосок) хорошо развита у растений-паразитов (заразиха, повилика), губчатая ткань веламен – на воздушных корнях орхидных. Поглощающие ткани развиваются в прорастающих семенах (например, на щитке у зародышей злаков) и в водопоглощающих волосках листьев. У некоторых водных растений известны гидроподы – клетки или группы клеток на поверхности листьев, избирательно поглощающие растворенные в воде вещества. 28) Выделительные ткани. Общая характеристика К выделительным (секреторным) тканям относятся разного рода структурные образования, способные активно выделять из растения или изолировать в его тканях продукты метаболизма и капельно-жидкую воду. Выделяемые наружу или накапливаемые внутри жидкие и твердые продукты метаболизма получили общее название секретов . Как правило, секреты (смесь терпеноидов , полифенольные соединения , оксалат кальция ) относятся к продуктам вторичного метаболизма (обмена), но среди них встречаются и продукты первичного обмена . Вторичные метаболиты представлены в растениях огромным числом индивидуальных соединений, хотя они образуются на немногих путях обмена веществ ( схема 1 ) и их биогенетическими предшественниками являются - мевалонат , ацетил-КоA (ацетил-коэнзим A) - сложное органическое вещество, молекулы которого участвуют в главнейших биохимических реакциях, идущих в живой клетке, коричная кислота и ряд белковых аминокислот. В левой части схемы 1 указаны биогенетические предшественники основных классов соединений, относимых к продуктам вторичного метаболизма . Три предшественника: мевалонат , ацетил-КоA и аминокислоты относятся к продуктам первичного обмена; коричная кислота - продукт уже вторичного обмена, но она оказывается необходимой в ходе биохимического синтеза флавоноидов и различных более простых природных производных фенилпропана, обобщенно называемых фенилпропаноидами. В правой колонке схемы перечислены главнейшие классы вторичных метаболитов (цифрами указано приблизительное число индивидуальных соединений, выделенное из различных групп организмов). Стрелками показана связь между теми или иными соединениями в ходе биохимических реакций. Сами биохимические реакции, в ходе которых одни соединения превращаются в другие, довольно разнообразны и включают множество стадий. Элементы, или комплексы, выделительных тканей встречаются во всех органах. В зависимости от того, выделяют они вещества наружу или выделенные вещества остаются внутри растения, их делят на две группы: ткани внутренней и наружной секреции. Клетки выделительных тканей по форме обычно паренхимные и тонкостенные. Они долго остаются живыми, выделяя секрет . Клетки-идиобласты по мере накопления большого количества секрета лишаются протопласта и стенки их нередко опробковевают. Синтез жидких секретов связывают с деятельностью внутриклеточных мембран и комплекса Гольджи . Поскольку продукты вторичного метаболизма биологически активны и могут вызвать повреждение цитоплазмы , существуют механизмы, препятствующие этому. Один из них - перенос таких веществ в вакуоль или в свободное изолированное от цитоплазмы пространство клетки. Другой механизм - химическое превращение соединений до относительно безвредных, что, разумеется, не исключает их последующее выделение. Прежде чем выделиться из цитоплазмы , где они синтезируются, секретируемые вещества преодолевают цитоплазматические мембраны - плазмалемму , если вещества выделяются в свободное пространство клетки, или тонопласт - при транспорте в вакуоль . Эволюционно внутренние выделительные ткани возникли из ассимиляционных и запасающих , а наружные связаны с покровными тканями . Клетки, содержащие оксалат кальция , изначально выступают как ассимиляционные или запасающие и лишь позднее превращаются в выделительные. Функции выделительных тканей растений существенно отличаются от функций выделительной системы животных. Образующиеся секреты нередко эффективно защищают растения от поедания животными, повреждения насекомыми или патогенными микроорганизмами. Часто секреты , выступающие из мест поранения растений при искусственных или естественных повреждениях, играют роль бактерицидного пластыря (смолы, бальзамы). Выделяющиеся в цветкахароматические и сахаристые вещества ( нектар ) привлекают насекомых-опылителей. Наконец, накапливающиеся в разного рода вместилищах секретированные вещества могут вновь вовлекаться в процесс метаболизма и в этом случае выступают в роли запасных веществ. Клетки-идиобласты , особенно содержащие оксалат кальция , приобретают значение мест длительного "захоронения" токсичных для растения веществ или веществ, полностью исключенных из метаболизма. Вещества, полностью исключающиеся из метаболизма, удаляются из растения при опадении листьев, слущивании корки и т.п. Это основной путь избавления от "шлаков". Судьба секретирующих клеток различна. Иногда они остаются живыми длительное время. При этом секреция осуществляется путем пассивного или активного транспорта либо экзоцитоза . В иных случаях при секреции происходит повреждение клетки. Выделение наружу выработанного секретасопровождается выбросом части цитоплазмы , но отделяется только безъядерная часть клетки. Наконец, известны случаи, когда клетка полностью дегенерирует и иногда вместе с выработанным ею продуктом выделяется в окружающую среду (например, солевые волоски некоторых галофитов и слизистые клетки корневого чехлика ). Выделение капельно-жидкой воды характерно для многих растений и осуществляется через гидатоды . Ткани внутренней секреции могут быть представлены отдельными клетками-идиобластами , вместилищами выделений , смоляными ходами , эфирномасляными каналами и млечниками. 29) Проводящие ткани. Общая характеристика. Проводящая ткань — вид тканей растений, служащих для передвижения по организму растворённых питательных веществ. У многих высших растений она представлена проводящими элементами (сосудами и ситовидными трубками). В стенках проводящих элементов есть поры и сквозные отверстия, облегчающие передвижение веществ от клетки к клетке. Проводящая ткань образует в теле растения непрерывную разветвлённую сеть, соединяющую все его органы в единую систему — от тончайших корешков до молодых побегов, почек и кончиков листа. Происхождение Учёные считают, что возникновение тканей связано в истории Земли с выходом растений на сушу. Когда часть растения оказалась в воздушной среде, а другая часть (корневая) — в почве, появилась необходимость доставки воды и минеральных солей от корней к листьям, а органических веществ от листьев к корням. Так в ходе эволюции растительного мира возникло два типа проводящих тканей — древесина и луб. По древесине (по трахеидам и сосудам) вода с растворёнными минеральными веществам поднимается от корней к листьям — это водопроводящий, или восходящий, ток. По лубу (по ситовидным трубкам) образовавшиеся в зелёных листьях органические вещества поступают к корням и другим органам растения — это нисходящий ток. Значение Проводящие ткани растений — это ксилема (древесина) и флоэма (луб). По ксилеме (из корня в стебель) идёт восходящий ток воды с растворёнными в ней минеральными солями. По флоэме — более слабый и медленный ток воды и органических веществ. Значение древесины Ксилема, по которой идёт сильный и быстрый восходящий ток, образована мёртвыми, разными по величине клетками. Цитоплазмы в них нет, стенки одревеснели и снабжены многочисленными порами. Представляют собой цепочки из прилегающих друг к другу длинных мёртвых водопроводящих клеток. В местах соприкосновения у них имеются поры, по которым и передвигаются растворы из клетки в клетку по направлению к листьям. Так устроены трахеиды. У цветковых растений появляются и более совершенные проводящие ткани — сосуды. В сосудах поперечные стенки клеток в большей или меньшей степени разрушаются. Таким образом, сосуды — это полые трубки, образованные множеством мёртвых трубчатых клеток (члеников). По таким сосудам растворы передвигаются ещё быстрее. Помимо цветковых, другие высшие растения имеют только трахеиды. Значение луба В силу того, что нисходящий ток более слабый, клетки флоэмы могут оставаться живыми. Они образуют ситовидные трубки — их поперечные стенки густо пронизаны отверстиями. Ядер в таких клетках нет, но они сохраняют живую цитоплазму. Ситовидные трубки остаются живыми недолго, чаще 2-3 года, изредка — 10-15 лет. На смену им постоянно образуются новые ситовидные трубки. Визуализация Интересный метод визуализации проводящей системы деревьев предложили В. И. Иванов-Омский и Е. И. Иванова. Они использовали коронный разряд, или, точнее, эффект Кирлиана. Этим методом у осины, например, обнаружены эллипсовидные на срезе конгломераты сосудов. 30) Ксилема КСИЛЕМА, проводящая ТКАНЬ растений, которая переносит воду и растворы минеральных солей от корнейко всем органам растения и обеспечивает ему опору. Наиболее важные клетки, длинные и тонкие, называютсясосудами ксилемы. Это отмершие клетки, между которыми нет перегородок. Они соединяются в длинныестолбики-трубочки, образуя сосуды, по которым поднимается вода. По мере испарения воды с поверхностилистьев (ТРАНСПИРАЦИИ) ОСМОТИЧЕСКИЕ СИЛЫ притягивают ее к листьям, извлекая из ксилемы, ивосстанавливают нужный уровень влажности. Этот процесс создает в сосудах ксилемы ТУРГОР, которыйнаряду с кольцами ЛИГНИНА (укрепляющего стенки сосудов и предотвращающего их сжатие) обеспечиваетподдержку растения. Крошечные отверстия в стенках сосудов ксилемы (поры) позволяют воде переходить изодной трубки в другую.У папоротников и хвойных нет сосудов ксилемы. Вместо них имеются похожие клетки, которые называютсятрахеидами. Они не утратили перегородок, так что вода должна проходить сквозь поры, которые замедляюттечение. Лигнин делает стенки сосудов и трахеид прочными и жесткими, что чрезвычайно важно, посколькуобеспечивает опору растущему растению. Ткань ксилемы содержит также непроводящие волокна - мертвыеклетки, утолщенные лигнином для дополнительной опоры.У деревьев ксилема с возрастом становитсянепроводящей, и для ее замены формируется новая ксилема, образующая внешний слой ствола. Отмершаясердцевина - нефункционирующая ксилема - остается в качестве основной опоры. Ксилема. Древесина образуется из старой ксилемы, выросшей за прошлые годы, стенки сосудов которойперенасыщены лигнином. Отмершие клетки, пропитанные дубильными веществами и смолой,образуютпрочную темную сердцевину. Она окружена лубом, который менее крепок. Из него состоит большая потолщине часть ствола молодых деревьев. Слои нового луба нарастают на внешний слой ствола каждый год, формируя кольцо, которое можно отчетливо видеть на срезе ствола. Эти кольца наиболее заметны вумеренных широтах, где характер роста дерева меняется от сезона к сезону. 31) Флоэма Флоэма - сложная проводящая ткань, по которой осуществляется транспорт продуктов фотосинтеза от листьев к местам их использования или отложения (к конусам нарастания , подземным органам, зреющим семенам и плодам и т.д.). Первичная флоэма дифференцируется из прокамбия , вторичная флоэма (луб) - производная камбия . В стеблях флоэма находится обычно снаружи от ксилемы , а в листьях она обращена к нижней стороне пластинки. Первичная и вторичная флоэмы, помимо различной мощности ситовидных элементов, отличаются тем, что у первой отсутствуют сердцевинные лучи. В состав флоэмы входят ситовидные элементы, паренхимные клетки, элементы сердцевинных лучей и механические элементы. Большинство клеток нормально функционирующей флоэмы живые. Отмирает лишь часть механических элементов. Собственно проводящую функцию осуществляют ситовидные элементы. Различают два их типа: ситовидные клетки и ситовидные трубки. Терминальные стенки ситовидных элементов содержат многочисленные мелкие сквозные канальцы, собранные группами в так называемые ситовидные поля. У ситовидных клеток, вытянутых в длину и имеющих заостренные концы, ситовидные поля располагаются главным образом на боковых стенках. Ситовидные клетки - основной проводящий элемент флоэмы у всех групп высших растений , исключая покрытосеменные . Клеток-спутниц у ситовидных клеток нет. Ситовидные трубки покрытосеменных более совершенны. Они состоят из отдельных клеток - члеников, располагающихся один над другим. Длина отдельных члеников ситовидных трубок колеблется в пределах 150-300 мкм. Поперечник ситовидных трубок составляет 20-30 мкм. Эволюционно их членики возникли из ситовидных клеток. Ситовидные поля этих члеников находятся главным образом на их концах. Ситовидные поля двух расположенных один над другим члеников образуют ситовидную пластинку. Членики ситовидных трубок формируются из вытянутых клеток прокамбия или камбия . При этом материнская клетка меристемыделится в продольном направлении и производит две клетки. Одна из них превращается в членик, другая - в клетку-спутницу. Наблюдается и поперечное деление клетки-спутницы с последующим образованием двух-трех подобных клеток, расположенных продольно одна над другой рядом с члеником ( рис. 47 ). Предполагается, что клетки-спутницы вместе с члениками ситовидных трубок составляют единую физиологическую систему и, возможно, способствуют продвижению тока ассимилянтов. При своем формировании членик имеет постенную цитоплазму , ядро и вакуоль . С началом функциональной деятельности он заметно вытягивается. На поперечных стенках появляется множество мелких отверстий-перфораций, образующих канальцы диаметром несколько микрометров, через которые из членика в членик проходят цитоплазматические тяжи. На стенках канальцев откладывается особый полисахарид - каллоза , сужающий их просвет, но не прерывающий цитоплазматические тяжи. По мере развития членика ситовидной трубки в протопласте образуются слизевые тельца. Ядро и лейкопласты , как правило, растворяются, граница между цитоплазмой и вакуолью - тонопласт - исчезает и все живое содержимое сливается в единую массу. При этом цитоплазма теряет полупроницаемость и становится вполне проницаемой для растворов органических и неорганических веществ. Слизевые тельца также теряют очертания, сливаются, образуя слизевой тяж и скопления около ситовидных пластинок. На этом формирование членика ситовидной трубки завершается. Длительность функционирования ситовидных трубок невелика. У кустарников и деревьев она продолжается не более 3-4 лет. По мере старения ситовидные трубки закупориваются каллозой (образующей так называемое мозолистое тело) и затем отмирают. Отмершие ситовидные трубки обычно сплющиваются давящими на них соседними живыми клетками. Паренхимные элементы флоэмы (лубяная паренхима) состоят из тонкостенных клеток. В них откладываются запасные питательные вещества и отчасти по ним осуществляется ближний транспорт ассимилянтов. У голосеменных клетки-спутницы отсутствуют и их роль выполняют прилегающие к ситовидным клеткам немногочисленные клетки лубяной паренхимы. Сердцевинные лучи, продолжающиеся во вторичной флоэме, также состоят из тонкостенных паренхимных клеток. Они предназначены для осуществления ближнего транспорта ассимилянтов. 32) Онтогенез высшего растения. Онтогенезом называют индивидуальное развитие организма от зиготы или вегетативного зачатка до естественной смерти. В ходе онтогенеза реализуется наследственная информация организма – его генотип – в конкретных условиях окружающей среды, в результате чего формируется фенотип, то есть совокупность всех признаков и свойств данного индивидуального организма. Онтогенез включает в себя все жизненные процессы и продолжается у разных растений от 10—14 дней до 3—5 тыс. лет. По продолжительности жизни растения делят на эфемеры, однолетние, двулетние и многолетние (секвойи — до 5 тыс. лет). Независимо от продолжительности жизни все растения можно разделить на две группы: моно- и поликарпические.Монокарпическими (греч. mono — один, karpos — плод) называются растения, цветущие и плодоносящие один раз в своей жизни (эфемеры, однолетние растения, двулетние растения (мокровь, свекла) и некоторые многолетние, на-пример мексиканские агавы, бамбук) Наступление плодоношения у таких организмов приводит к их быстрому старению и отмиранию. Поликарпические растения — это растения, плодоносящие много раз в жизни. Онтогенез дискретен, т. е. его можно разделить на отдельные этапы, проходящие последовательно один за другим. В онтогенезе цветковых растений выделяют 5 этапов: эмбриональный, ювенильный (молодости), зрелости, размножения (генеративный) и старости (сенильный). 1.Эмбриональный этап — это период образования зародыша и семени, который начинается со слияния яйцеклетки и спермия и образования зиготы на материнском растении. Зародыш состоит из меристематических тканей и питается гетеротрофно, т. е. за счет питательных веществ, поступающих из материнского растения. У цветковых растений зигота делится поперек, образуя материнскую клетку суспензора (нижняя клетка) и будущий проэмбрио (верхняя клетка). В суспензорной части образуется подвесок, продвигающий зародыш вглубь эндосперма. На стадии глобулы зародыш имеет шаровидную форму. Далее у двудольных синхронно растут две семядоли, что приводит к стадии сердечка, а затем торпедо. У некоторых растений на эмбриональной стадии формируются уникальные органы (например, щиток, колеоптиль или гаустория). Эмбриональный этап заканчивается полным формированием семян и переходом их в состояние покоя. 2. Ювенильный этап (или молодость) — это период от прорастания семени до начала заложения первых цветков. Прорастание семени происходит при наступлении благоприятных условий после периода покоя. Оно является возобновлением роста в результате поступления в семя воды и его набухания. Содержащиеся в семени ферменты активизируются, а также синтезируются новые ферменты. В процессе своего формирования проросток постепенно переходит с гетеротрофного на автотрофное питание. Для ювенильных растений характерна максимальная активность всех физиологических функций, поэтому растения в это время обладают минимальной устойчивостью. У молодых растений большая способность к корнеобразованию: черенки, срезанные в этот период онтогенеза, легко укореняются, что с давних пор используется в садоводстве и лесоводстве. На этом этапе у растения образуются только вегетативные органы: листья, стебли, корни. 3. Зрелость — период формирования репродуктивных органов растения от заложения первого цветка до первого оплодотворения. Заложение цветков тормозит рост вегетативных органов. В определенный этап онтогенеза верхушечная меристема побега начинает вместо листьев, междоузлий формировать цветки или соцветия. Однако она должна быть индуцирована для перехода к генеративному развитию. Внешними индукторами этого процесса являются температура, свет, продолжительность дня и ночи, вода, элементы минерального питания. У некоторых растений способность к заложению цветков, т. е. переход к этапу зрелости, появляется лишь после действия на них пониженных температур в течение определенного времени. Уже в старину люди знали, что злаки делятся на двулетние и однолетние. Однолетние злаки колосятся в первый год и называются яровыми, а двулетние — только после перезимовки и называютсяозимыми. Свойство озимых однолетних и двулетних растений ускорять переход к заложению цветков после действия на них пониженных температур в течение определенного времени назвали яровизацией. Продолжительность периода охлаждения и эффективные тем-пературы зависят от вида и даже разновидности растений. У большинства растений этот период составляет 1—3 мес, у других— от нескольких дней до двух недель. Для сельдерея, хризантемы, плевела многолетнего, гравилата и левкоя достаточно 1 —2-дневного охлаждения. В зависимости от реакции на длину дня, растения делятся на короткодневные, переходящие к цветению только тогда, когда день короче ночи (день составляет 8—12 ч в сут) - рис, кукуруза, просо, соя, сахарный тростник, хлопчатник, сорго; длиннодневные ( день не менее 16—18 ч/сут) - пщеница, ячмень, овес, горчица, свекла, лен, шпинат, клевер,укроп; растения, нуждающиеся в чередовании разных фотопериодов, а также нейтральные по отношению к длине дня (гречиха, горох, фасоль, томаты). Продолжительность дня или ночи (фотопериод) воспринимает листовая пла-стинка. Основную роль в восприятии фотопериода играет фитохром, а изменения, в результате которых начинается заложение цветков, происходят в меристеме - ближайшей к листу точке роста. Длинно- или короткодневность растений зависит от географического происхождения вида или сорта. Длиннодневность выработалась у растений в связи с пере-зимовкой, короткодневность — в связи с периодическими засухами или тропическими ливнями. Длиннодневные растения распространены, в основном, в умеренных и приполярных широтах, короткодневные – в субтропиках. 33) Морфологическое расчленение побега Обычно унифациальные листья ориентированы не горизонтально, а вертикально и приспособлены к жизни в условиях прямого солнечного освещения. Ограниченность роста листа связана прежде всего с тем, что у семенных растений он очень скоро теряет способность к верхушечному нарастанию и не сохраняет собственного меристематического апекса. Кроме того, рост листа, идущий обычно за счет краевой и плоскостной вставочных меристем, ограничен во времени. Достигнув определенных размеров, лист затем до конца жизни остается без изменений. Исключения из этого правила среди семенных растений очень редки. В течение всей жизни растут вставочно собственными основаниями листья своеобразного африканского голосеменного растения — вельвичии удивительной. Длительный верхушечный рост характерен для пернстых листьев папоротника, называемых «вайями». Молодые вайи закручены «улиткой», внутри которой довольно долго функционирует верхушечная меристема. Морфологическое расчленение листа. Основная часть типичного взрослого зеленого листа — его пластинка, к которой и относятся приведенные выше отличительные характеристики листа — плоская форма, дорсовен-тральность, ограниченный рост и т. д. Нижнюю часть листа, сочлененную со стеблем и иногда нерезко от него отграниченную, называют основанием листа (или листовым подножием). Довольно часто между основанием и пластинкой формируется стеблеподобный цилиндрический или полукруглый в сечении черешок листа. Он может быть относительно очень длинным (например, у осины) или очень коротким (как у ивы). В этих случаях листья называют черешковыми, в отличие от сидячих, где черешка нет и пластинка переходит непосредственно в основание. Роль черешка, кроме опорной и проводящей, состоит в том, что он долго сохраняет способность к вставочному росту и может регулировать положение пластинки, изгибаясь по направлению к свету, о чем уже говорилось в разделе о листорасположении. Основание листа принимает различную форму. Иногда оно почти незаметно или имеет вид небольшого утолщения (листовая подушечка), например у кислицы . Часто основание сильно разрастается в ширину и длину, охватывая узел целиком и образуя трубку, называемую влагалищем листа. Образование влагалища особенно характерно для однодольных, в частности для злаков, а из двудольных — для зонтичных. Влагалища защищают стебель и почки. Влагалищем верхнего из развернувшихся листьев на побеге окружена верхушечная почка этого побега, содержащая новые листовые зачатки и нередко зачаточное соцветие. Влагалища всех листьев надежно прикрывают и пазушные почки, сидящие над узлами. Условия темной и влажной замкнутой камеры внутри трубчатого влагалища способствуют длительному сохранению интеркалярной меристемы стебля в нижней части междоузлия, над узлом. В то же время механические ткани, хорошо развитые во влагалище листа, делают его опорным органом для стебля, весьма нежного и слабого в зонах вставочной меристемы. Всем известно, что, если снять трубку листового влагалища с молодого растущего стебля ржи, овса, тимофеевки или любого другого злака, стебель 34) Почки. Строение, типы Почка растения представляет собой зачаток побега. В строении почки растения различают зачаточный стебель, имеющий конус нарастания, зачаточные цветки или листья (в зависимости от вида почки). Растения имеют вегетативные почки, которые состоят из листьев, расположенных на зачаточном стебле, и генеративные почки, несущие зачатки соцветий или цветков. Если генеративная почка имеет один цветок, ее называют бутоном. У некоторых растений имеются также вегетативно-генеративные (смешанные) почки, которые одновременно имеют зачатки листьев и цветков. Зачатки листьев формируются на конусе нарастания снизу вверх. Вследствие того, что они растут неравномерно, то подворачиваются к верхушке, тем самым обусловливая появление темного и влажного замкнутого пространства внутри почки. Так обеспечивается защита внутренней части почки от высыхания и повреждений. Когда почка распускается, почечные листья отодвигаются от зачаточного стебля и распрямляются в связи с ростом междоузлий стебля. Почки имеют серую, коричневую или бурую окраску, а снаружи у многих древесных растений, особенно произрастающих в холодном климате, они покрыты плотными чешуйками, которые являются видоизмененными листьями, защищающими почки от повреждений и холода. Чешуйки почек часто выделяют смолистые вещества для лучшей защиты, как например, у тополя, березы. Называются такие почки защищенными или закрытыми. Если почки не имеют чешуек, их называют голыми или незащищенными. Дополнительную защиту от обезвоживания и холода обеспечивает густой пушок, покрывающий голые почки многих растений снаружи. У многолетних травянистых растений, к примеру, у ландыша, пырея, зимующие почки расположены на подземных побегах или в нижней части надземных возле самого грунта. Благодаря такому расположению, почки хорошо переносят перепады температур. У кактусов почки имеют особое строение и называются ареолы, а почечные чешуи таких почек преобразуются в иглы, выполняющие защитную функцию. По расположению на стебле различают верхушечные и боковые почки. Если образование почки происходит на конце побега, то появляется верхушечная (терминальная) почка, за счет которой осуществляется рост побега в длину. Благодаря развитию боковых почек, обеспечивается формирование системы побегов и их ветвление. Боковые почки называются пазушными, если они размещены в пазухах листьев, и внепазушными (добавочными или придаточными), если они закладываются в любой другой части стебля, в том числе на листьях и корнях. В пазухах листьев почки размещены поодиночке или группами. Распределение пазушных почек на стебле растения соответствует размещению листьев, то есть такие почки размещаются супротивно, попеременно, мутовчато, верхушечно. Расположение почек в пазухах листьев имеет важное биологическое значение, так как, кроме того, что кроющий лист обеспечивает защиту почки от механических повреждений, из зеленого листа к почке в больших количествах поступают питательные вещества. Придаточные почки не связаны ни с верхушками побегов, ни с узлами, в их расположении не проявляется четкой закономерности. Благодаря придаточным почкам, обеспечивается вегетативное размножение. В этом состоит их биологическое значение. Посредством придаточных почек осуществляется размножение корнеотпрысковых растений, например, осота, осины. Корневые отпрыски представляют собой побеги, развивающиеся из придаточных почек на корнях. Придаточные почки на листьях растений развиваются очень редко. Примером может служить комнатное растение каланхоэ (бриофиллюм), почки которого сразу воспроизводят маленькие побеги с придаточными корнями. Название «почки возобновления» относится к тем почкам многолетних растений, которые находятся в течение определенного промежутка времени в покое в связи с неблагоприятными условиями внешней среды, а затем при наступлении теплой влажной погоды образуют побеги. Так, почки находящиеся зимой в состоянии покоя, именуют зимующими, а если в данном климате нет зимнего периода, то покоящимися. Некоторые почки не имеют периода покоя. Из них сразу появляются новые побеги, увеличивающие поверхность растения. После своего появления некоторые почки могут оставаться нераскрытыми в течение длительного времени. Это спящие почки. Они характерны для большинства многолетних трав, лиственных деревьев и кустарников. Спящие почки не трансформируются в побеги в течение ряда лет, иногда не превращаются в побеги совсем. Стимулирующим фактором для развития спящих почек в большинстве случаев служит гибель ствола растения. Так, при вырубке берез из спящих почек образуется поросль вокруг пней. Большую роль спящие почки играют в жизни кустарников. При прекращении роста основного ствола кустарника пробуждаются спящие почки, и начинается их развитие, приводящее к образованию дочерних стволов, размеры которых могут превышать размеры материнского. Сама форма развития растений в виде кустарников возникла, благодаря наличию спящих почек. У растений формируется преемственность – из материнских почек, появляющихся на побегах, образуются дочерние почки. После распускания материнской почки и формирования из нее побега заключенные на этом побеге дочерние почки сами позднее превращаются в материнские. 35) Ветвление побегов. ВЕТВЛЕНИЕ ПОБЕГА — происходит в процессе роста растения. Существует два основных типа ветвления: дихотомическое и моноподиальное. При дихотомическом (вильчатом) ветвлении из точки роста развиваются две одинаковые ветви. При моноподиальном ветвлении главная ось продолжает расти, а ниже ее точки роста образуются боковые ветви либо в восходящей последовательности, либо сближенные и образующие мутовки. Дихотомическое ветвление встречается обычно у менее организованных растений — многих водорослей, псилофитов, печеночных мхов, плаунов. Моноподиальное ветвление (моноподии) бывает у водорослей, лиственных мхов, хвощей, семенных растений (напр., у хвойных, клена, бука, многих трав). Из моноподия может развиться ложная дихотомия. Распространено также ветвление, называемое симподиальным. Оно может развиться как из дихотомии, так и из моноподия и представляет собой результат более быстрого развития сначала одной из ветвей, обгоняющей др. в своем росте, а затем обгоняемой др. ветвями (процесс “перевершинивания”). В итоге получается как бы одна ось (ствол, стебель), но состоящая из ряда осей разных порядков. Симподиальное ветвление наблюдается у большинства древесных двудольных растений. 36) Первичное анатомическое строение стебля Первичное строение стебля. Под эпидермой расположена первичная кора, образованная клетками паренхимы, часто содержит хлоропласты. Внутренний слой первичной коры - эндодерма носит название крахмалоносного влагалища, так как ее клетки много крахмальных зерен. Наружный слой клеток стелы, так же как и у корня, называется перицикл и сохраняет функцию меристематической активности – здесь могут закладываться придаточные почки и придаточные корни. Отличительной особенностью стебля является образование в центре сердцевины из паренхимных клеток. В корне сердцевина отсутствует. 37) Стелярная теория. Типы стел Стела, или центральный осевой цилиндр, — комплекс тканей, лежащих внутри осевых органов сосудистых растений, под первичной корой. Стелярная теория — это учение о типах стел и закономерностях их эволюции. Основы стелярной теории заложил французский ботаник Филипп ван Тигем. В зависимости от взаиморасположения проводящих тканей, а также наличия сердцевины, выделяют несколько основных типов стел. |