Главная страница
Навигация по странице:

  • 14.6. методика аппроксимации эмпирических данных [41].

  • Мера приближения.

  • Квадратичная мера

  • Мера наименьших модулей

  • Минимаксная мера

  • Аппроксимирующая функция

  • Порядок модели

  • ЦИФРОВАЯ ОБРАБОТКА СИГНАЛОВ. Аппроксимация сигналов. Цифровая обработка сигналов


    Скачать 360.5 Kb.
    НазваниеЦифровая обработка сигналов
    АнкорЦИФРОВАЯ ОБРАБОТКА СИГНАЛОВ
    Дата25.02.2020
    Размер360.5 Kb.
    Формат файлаdoc
    Имя файлаАппроксимация сигналов.doc
    ТипРеферат
    #109813
    страница15 из 17
    1   ...   9   10   11   12   13   14   15   16   17
    Преобразование частоты дискретизации с нецелым шагом на практике обычно выполняют представлением нецелого множителя максимально близким приближением рациональными числами вида L/M, Это позволяет выполнять преобразование частоты дискретизации последовательными операциями сначала интерполяции с шагом L, сохраняющей все частотные составляющие сигнала, и затем децимации с шагом М, при которой часть высокочастотных составляющих и шумов будет подавлена низкочастотной фильтрацией. Поскольку при этом низкочастотные фильтры экспандирования и децимации следуют друг за другом и работают на одной частоте дискретизации, то вместо двух фильтров можно применять один, имеющий минимальную частоту среза с коэффициентом усиления, равным L.

    При программной обработке больших пакетов данных децимация и интерполяция может выполняться в спектральной области с использованием БПФ.

    14.6. методика аппроксимации эмпирических данных [41].

    Эмпирические данные, как правило, задаются числовыми рядами значений двух величин: независимой (хk) и зависимой (уk) , каждая из которых кроме определенной регулярной составляющей может содержать и случайные составляющие самой различной природы, обусловленные как статистической природой изучаемых процессов, так и внешними факторами процессов измерений и преобразования данных (шумы, помехи, ошибки измерений). Независимая переменная xk обычно полагается детерминированной, а ее случайная составляющая "переносится" на зависимую переменную yk. Полагается также, что значения случайной составляющей зависимой переменной распределены по некоторому вероятностному закону (например – нормальному).

    При выполнении аппроксимации данных предполагается существование определенной детерминированной связи y(x) между регулярными составляющими этих двух числовых рядов на статистически значимом уровне, достаточном для ее выявления на уровне случайных составляющих. Задача выявления такой закономерности относится к числу неопределенных и неоднозначных, результат которой зависит от трех основных субъективных факторов:

    • выбора меры близости зависимой переменной к искомой функции и метода построения приближения (параметров математической модели);

    • выбора подходящего класса функции аппроксимации (степенной, тригонометрической и пр.), отвечающего физической природе моделируемого процесса;

    • метода оптимизации порядка модельной функции или числа членов ряда аппроксимирующего выражения.

    Отсюда следует, что оптимальная аппроксимация может быть обеспечена только достаточно гибкими интерактивными алгоритмами на основе многоэтапных итерационных процессов с возможностью коррекции на каждом этапе.

    Мера приближения. Наиболее распространен критерий наилучшего приближения в виде минимума степенной разности между переменной yk и аппроксимирующей функцией (xk):

    [yk - (xk)]S  min, (14.6.1)

    где S > 0 - положительное число.

    Квадратичная мера реализуется при S = 2 в методе наименьших квадратов (МНК) и обеспечивает максимальное правдоподобие функции приближения при нормальном распределении случайной составляющей зависимой переменной yk. Несмещенной оценкой меры приближения в МНК является дисперсия остатков:

    D = {[yk - (xk)]2}/(k-m), (14.6.2)

    где m – количество параметров в функции приближения, (k-m) – число степеней свободы. Однако эмпирические данные могут содержать выбросы и грубые ошибки, которые вызывают смещения вычисляемых параметров. Их влияние обычно исключается цензурированием данных: вычислением гистограммы разностей yk-(xk) после определения первого приближения функции аппроксимации и исключением "хвостовых" элементов гистограммы (до 2.5% от количества данных, или резко выделяющихся элементов данных на основании оценок вероятностей с использованием r- или t- распределений).

    Мера наименьших модулей (метод Лагранжа) реализуется при S = 1 и применяется при распределениях случайных составляющих зависимой переменной по законам, близким к закону Лапласа (двустороннее экспоненциальное распределение). Такая мера соответствует площади между графиками эмпирических данных и функции аппроксимации, и, по сравнению с квадратической, является более устойчивой, в том числе при наличии случайных составляющих с большими амплитудами (длинные "хвосты" разностных гистограмм). Оценки по модулю получили название "робастных" (robust – устойчивый).

    Свойства квадратичной меры и меры наименьших модулей в определенной степени сочетаются при S = 3/2.

    Минимаксная мера (мера Чебышева – минимизация максимального расхождения функции аппроксимации с данными) обеспечивает наилучшее приближение при равномерном распределении значений случайной составляющей, но не является устойчивой при наличии больших расхождений данных с функцией аппроксимации.

    Аппроксимирующая функция, в принципе, может быть математической функцией любого типа, линейной комбинацией различных функций или функциональным рядом из степенных, тригонометрических и любых других функций. В основу ее построения желательно закладывать теоретические предположения о сущности изучаемого явления, хотя бы по таким свойствам, как область определения переменных и производных, асимптоты, минимумы и максимумы.

    При полном отсутствии априорной информации о распределении случайной составляющей данных, на начальном этапе обычно используется квадратичная мера приближения, при этом существенное значение имеет количество задаваемых параметров функции аппроксимации, особенно при малом количестве данных. Как следует из (14.6.2), при прочих равных условиях целесообразно использовать функции с минимальным количеством задаваемых параметров, что обеспечивает большее число степеней свободы и меньшие значения дисперсии остатков.

    Наибольшее распространение в практике аппроксимации при отсутствии теоретических аспектов изучаемых явлений получили функциональные ряды, для которых определяющее значение имеет порядок аппроксимирующей функции (модели).

    Порядок модели ограничивает число членов функционального ряда аппроксимирующей функции определенным оптимальным количеством членов ряда, которое обеспечивает обоснованное расхождение с фактическими данными и минимизирующее отклонение от искомой регулярной составляющей данных.

    Очевидно, что для функциональных рядов порядок модели (степень ряда для степенных рядов) определяет значение меры приближения. При повышении порядка модели минимум функции (14.6.1) стремится к нулю. Однако это означает, что при повышении порядка модели в функцию аппроксимации входит не только регулярная составляющая данных, но все большая и большая доля случайных составляющих, в пределе до полного соответствия функции k исходным данным yk. Но повышение степени приближения к исходным данным при наличии в них случайных составляющих с какого-то определенного момента (порядка модели) не только не будет приближать функцию аппроксимации к регулярным составляющим данных, а наоборот – увеличивать расхождение. С этой точки зрения термин "меры приближения" (14.6.1) было бы целесообразнее заменить термином "мера аппроксимации" данных, а под мерой приближения понимать значение меры аппроксимации, при которой обеспечивается максимальная степень приближения функции аппроксимации к регулярной составляющей данных (минимум дисперсии разности функций аппроксимации и регулярной составляющей).

    При разделении данных на значения регулярных составляющих sk и случайных k, для квадратичной меры можно записать:

    [yk-(xk)]2 =
    1   ...   9   10   11   12   13   14   15   16   17


    написать администратору сайта