Главная страница
Навигация по странице:

  • ЛЕКЦИЯ: Вакуолярная система.

  • Гранулярный ЭПР

  • Гладкий ЭПР.

  • ЛЕКЦИЯ: Комплекс Гольджи

  • цитологические исследования в кдл. цитологические исследования. Цитологические исследования Цитология


    Скачать 168.52 Kb.
    НазваниеЦитологические исследования Цитология
    Анкорцитологические исследования в кдл
    Дата06.11.2019
    Размер168.52 Kb.
    Формат файлаdocx
    Имя файлацитологические исследования.docx
    ТипДокументы
    #93805
    страница3 из 9
    1   2   3   4   5   6   7   8   9

    Эндоцитоз был писан Мечниковым в 1905 году. Эндоцитоз включает пиноцитоз и фагоцитоз. Может быть неспецифическим или конститутивным (постоянным), и специфическим (рецепторным).

    Неспецифический эндоцитоз протекает автоматически и часто приводит к захвату и поглощению ненужных клетке веществ. Сопровождается первоначальной сорбцией (осаждением) гликокаликса. Гликокаликс имеет кислые группировки на углеводной части. Имеют отрицательный заряд. За счет этого предпочтительное электростатическое взаимодействие. При таком адсорбционном неспецифическом эндоцитозе поглощаются макромолекулы и мелкие частицы (кислые белки, антитела, коллоидные частицы).

    На следующем этапе происходит изменение морфологии клеточной поверхности (инвагинация). Сначала образуются окаймленные ямки, состоящие из основного белка клатрина. Три его молекулы вместе с тремя молекулами низкомолекулярного вспомогательного белка образуют рыхлую сеть, состоящую из пяти и шестиугольных структур. Клатриновый слой окаймляет весь периметр отделяющихся первичных эндоцитозных вакуолей и обеспечивает их слияние и последующий транспорт в клетке. При поступление внутрь цитозоля клатриновый слой распадается, диссоциирует и мембрана эндосомы приобретает обычный вид. После потери клатринового слоя эндосомы сливаются друг с другом.  Часть эндосом возвращается к поверхности клетки и сливается с ней, но большая часть участвует в первичном пищеварении, в котором так же участвуют лизосомы. В ходе фагоцитоза и пиноцитоза клетки теряют большую площадь плазмолеммы, которая довольно быстро восстанавливается за счет процесса рециклизации мембран. Это процесс возвращения вакуолей и их встраивания в плазмолемму. Таким образом при рециклизации мы имеем дело с челночным механизмом переноса мембран.

    Плазмолемма – эндосома – вакуоль – плазмолемма.

    Специфический или опосредуемый рецепторами эндоцитоз отличается тем, что на мембране имеются специфические рецепторы – лиганды (рецепторы, взаимодействующие только с одним типом молекул). Внутри эндосом более кислая среда. Кислая среда играет решающую роль в диссоциации рецепторов лиганды. Кислая среда активирует гидролазы (эндосома + лизосома = эндолизосома, первичная пищеварительная вакуоль).

     

    Экзоцитоз. Продукты заключенные в пузырьках транспортируются к плазмалемме. В местах их контактов они сливаются. Пузырек опустошается во вешнюю среду. Экзоцитоз может осуществляться постоянно, а может  только в ответ на внешние раздражители. Большинство веществ используется другими клетками.

     

    ЛЕКЦИЯ: Вакуолярная система.

    Вся гиалоплазма в клетках заполнена сложной сетью мембран (каналов, цистерн, которые сообщаются друг с другом постоянными или временными канальцами).Сеть имеет трехмерную структуру и называется вакуолярной системой. Все ее компоненты имеют одну мембрану. К этой системе принадлежат ЭПР, комплекс Гольджи, лизосомы, пероксисомы, секреторные вакуоли. Вся вакуолярная система выполняет следующие функции:

    1) Механическая. Разделяет гиалоплазму на компартменты;

    2) Регуляция обмена веществ. Мембраны вакуолярной системы регулируют транспорт ионов, участвуют в процессах диффузий и активного транспорта между компартментами;

    3) Вакуолярные системы осуществляют функцию синтеза, модификации, сортировки и экспорта из клетки биополимеров. Отличительной чертой является - сегрегация, т.е. обособление синтезированных полимеров и продуктов от цитозоля.

    ЭПР расположен близко к ядру. Эта область называется эндоплазма. Строение и количество элементов ЭПР зависит от функциональной активности клеток, стадий клеточного цикла и ее дифференцировки. Толщина мембран ЭПР – 5-6 нм, ширина просвета – 70 – 500 нм. Впервые структура была открыта Портером в 1945г. Примерно на 2/3состоит из белка, 1/3 из липидов. Разделяется на два типа: гладкий (агранулярный) и гранулярный (шероховатый).

    Гранулярный ЭПР представлен замкнутыми мембранами, которые образуют на сечениях вытянутые мешки, цистерны. Ширина полостей цистерн варьирует в зависимости от функции развития. Гранулярный ЭПР может быть представлен в клетке в виде разрозненных редких мембран или локальных скоплений таких мембран, которые называются эргастоплазма. Такой тип ЭПР встречаются в клетках, активно синтезирующих секреторные белки.

    Особенность гранулярного ЭПР – на поверхности мембран расположены рибосомы. Рибосомы образуют скопления, в общем виде называемые полисомы. Все рибосомы ЭПР – работают и синтезируют белок. Прикрепляются своей большой субъединицей. Количество рибосом на ЭПР четко связано с его синтетической активностью. Все рибосомы ЭПР участвуют в синтезе, так называемых, экспортных белков. Поэтому общая функция гранулярного ЭПР может быть определена, как синтез белков на рибосомах мембран и сегрегация их от остальных.

    Необходимо отметить, что в клетке синтез белков протекает на свободных полисомах. Полисома – группа рибосом, соединенная одной иРНК.

    Рассмотрим путь синтеза растворимых белков на рибосомах ЭПР. В начале, еще в гиалоплазме происходит связывание информационной РНК, кодирующей секреторный белок с рибосомой и начинается синтез белковой цепи. Первоначально синтезируется сигнальная последовательность белка (16-30 гидрофобных АМК). Это сигнальная последовательность в цитозоле узнается и связывается при взаимодействии с активным центром рибосомы (SRP-частицей), которая состоит из одной молекулы РНК и шести различных полипептидных цепей. На поверхности мембраны ЭПР, которая обращена в сторону гиалоплазмы, расположены интегральные рецепторные белки, которые носят названия рибофории, они взаимодействуют с SRP-частицей. При этом в результате этого контакта SRP-частица взаимодействуют и со своим рецептором и заякоривается в мембране ЭПР.

    При работе и  синтезе белка заякоренная рибосома взаимодействует с другим белковым комплексом (транслатором) на мембране. При взаимодействии с этим участком происходит отделение  SRP-частицы и синтезированный в рибосоме первичный пептид входит в канал, который образует транслатор. При этом синтез полипептида продолжается, удлиняется и его сигнальная последовательность вместе с растущей цепочкой оказывается внутри цистерны ЭПР. Синтезируемый белок проходит сквозь мембрану ЭПР во время своего синтеза, то есть котрансляционно. Внутри полости ЭПР с помощью специального фермента – пептидазы, сигнальная последовательность отщепляется. После окончания синтеза вся белковая молекула оказывается в полости ЭПР, рибосома отделяется от транслатора, диссоциирует на частицы. Затем закрывается канал транслатора.

    Кроме синтеза различных белков, в шероховатом ЭПР происходит синтез мембранных белков, которые встраиваются в мембрану ЭПР, становясь интегральными. Начальные стадии синтеза похожи на предыдущие. Здесь так же есть SPR-частицы, которые узнают сигнальную последовательность. Так же здесь происходит поступление участка белковой цепи через транслатор, но в цепи мембранного белка существует несколько АМК стоп-последовательностей, которые запрещают белковой цепи пересекать мембрану. Белок остается связанным с мембраной, а синтез не останавливается. Это приводит к тому, что в районе стоп-последовательности в белке появляются гидрофобные участки и белки встраиваются в мембрану.

    Белок может подвергаться модификациям.

    1)  Первичное гликозилирование. Ковалентное связывание белка с олигосахаридом, который имеет определенную структуру и содержит две молекулы N-ацетилглюкозамина, а кроме того, девять молекул сахара манозы, три молекулы сахара глюкозы и есть в составе специфический липид. Соединение обеспечивает дальнейший транспорт и превращение белка в гликопротеин. Происходит котрансляционно.

    2)  Кроме того, в полости ЭПР образуются дисульфидные связи. Происходит упаковка белка, сборка четвертичной структуры. Все эти процессы проходят при участии шаперонов - «белков теплового шока». Синтез этих белков возрастает при повышении температуры. Шапероны защищают белки от денатурации. Взаимодействие с этими белками защищает несвернутую цепь от контактов с другими белками и создает условие для нормально сворачивания.

    3)  На рибосомах ЭПР происходит синтез мембранных белков клетки. Отличие от других белков – не освобождаются от мембран, а встраиваются в них, становясь трансмембранными или полуинтегральными белками.

    4)  На мембранах негранулярного ЭПР так же синтезируются липиды. Липиды встраиваются в мембрану ЭПР со стороны цитозоля, но переносятся на другую сторону с помощью переносчиков. За счет этого мембрана растет.

    Процесс синтеза липидов идет одновременно с синтезом интегральных белков и поэтому биомембрана строится и растет за счет двух процессов 1) синтез и встраивание липидов; 2) синтез и интеграция мембранных белков.

    Белки мембран ЭПР, АГ, плазмалеммы имеют одно происхождение: синтезируются и встраиваются в шероховатом ЭПР.

    Удаленные участки гранулярного ЭПР, которые располагаются в зоне, близкому к комплексу Гольджи, теряют рибосомы и образуют выступы, от которых отпочковываются вакуоли с продуктами синтеза. Это промежуточная зона ЭПР и комплексом Гольджи.

    Вакуоли, отщепившиеся от этой зоны, покрыты белком - клатрином. После его потери пузырьки сливаются друг с другом, транспортируются с помощью микротрубочек в цис-зону комплекса Гольджи, где сливаются с его мембранами под контролем ферментов. Таким образом, осуществляется транспорт синтезируемых белков в зону комплекса Гольджи.

    1)  Гранулярный ЭПР осуществляет котрансляционный синтез белков, их первичную модификацию, соединение с олигосахаридом, т.е. гликозилирование. Образование гликопротеинов

    2)  Синтез мембранных липидов и их встраивание в мембрану (сборка).

    3)  Транспорт вакуолей, содержащих синтезированные продукты и их переход в цис-зону комплекса Гольджи.

     

    Гладкий ЭПР. Представляет собой часть мембраны вакуолярной системы. Так же мелкие вакуоли, каналы, трубочки, но гладкий ЭПР является вторичным по отношению к шероховатому. Диаметр вакуолей и канальцев 50-100 нм. Выраженность гладкого ЭПР не одинакова. Большая часть образует скопления или зоны. В клетках эпителия кишечника гладкий ЭПР находится в верхней части клетки вблизи всасывающей поверхности.

    Основной функцией является синтез, метаболизм липидов и углеводов. Кроме того, мембраны гладкого ЭПР участвуют в процессах детоксикации (обезвреживание ядов).

    Происходят процессы деградации различных токсичных органических веществ за счет локализации окислительных ферментов, из которых наиболее известен цитохром Р450. Он участвует в присоединении гидроксильной группы к различным опасным углеводам, которые попадают в мембранный бислой. За счет других окислительных ферментов к гидроксильным группам добавляются отрицательно заряженные молекулы (сульфаты, глюкуронавая кислота), что делает липофильные вещества растворимыми в воде. А это обеспечивает их обезвреживание и выведение из организма.

     

    Участки формируют саркоплазматический ретикулум. Это место хранения ионов кальция. Откладываются в виде фосфатов.

     

    ЛЕКЦИЯ: Комплекс Гольджи

     

    Открыт в 1898 году итальянским ученым Гольджи. Присутствует во всех эукариотических клетках, за исключением эритроцитов. Обычно элементы комплекса Гольджи располагаются около ядра рядом с центросомой в животных клетках, а в растительных – по периферии.

    Участки комплекса имеют вид сложных сетей. Ячейки этой сети могут быть связаны друг с другом или же располагаться отдельно в виде вогнутых вакуолярных образований. При этом морфология комплекса очень зависит от фазы клеточного цикла. Это динамически сложная организованная и поляризованная система вакуолей. Комплекс Гольджи в типичном случае – это собранные в небольшой зоне отдельные скопления, участки вакуолей, которые называются цистернами. Стопка уплощенных цистерн – диктиосома. В диктиосоме плотно друг к другу на расстоянии 20 – 25 нм располагаются плоские мембранные цистерны, между которыми находятся прослойки гиалоплазмы. Каждая цистерна имеет диаметр около одного мкм и переменную толщину. В центре цистерны мембраны более сближены (25 нм), а по краям цистерны имеются ампулярные расширения. Ширина их не постоянна. Количество таких цистерн в стопке варьирует от пяти до десяти штук. У одноклеточных встречается до двадцати штук. Кроме этих структурных единиц в состав комплекса относится много мелких вакуолей, располагающихся главным образом в периферических участках. Эти мелкие вакуоли отшнуровываются от ампулярных окончаний и обрамляют всю диктиосому.

    В диктиосоме принято различать два полюса:

    1) Проксимальный или формирующийся. Цис-полюс. Располагается ближе к ядру клетки.

    2) Дистальный или зрелый транс-полюс.

    3) Медиальная часть – середина.

    На транс-полюсе к комплексу примыкает участок, состоящий из трубчатых элементов и массой мелких вакуолей. Это опушенные пузырьки с белком клатрином. Принимают активное участие в экзоцитозе.

    Ближе к плазмолемме располагается область более крупных вакуолей, которые являются продуктом слияния более мелких вакуолей с образованием секреторных вакуолей.

    В 1924 году Насоновым было выдвинуто предположение, что комплекс Г. является органоидом, обеспечивающим разделение (сепарацию) и накопление веществ в клетке.

    Одна и та же клетка может участвовать в синтезе многих белков. Эта клетка изолирует их друг от друга и направляет к клеточной поверхности. Кроме того, в комплексе Гольджи происходит не только перекачка этих продуктов, но также и их постепенное созревание, модификация, которая заканчивается сортировкой продуктов.

    В цис-зону белки попадают после первичного гликозилирования. Все гликопротеины состоят из N-ацетилглюкозамина и маннозы. В цис-зоне происходит вторичная обработка. Гликопротеины для лизосом богаты маннозой. Происходит фосфорилирование.

    В каждой цистерне диктиосомы свои аппараты изменения гликозилирования. В средней части – вторичное гликозилирование секреторных белков. На транс-зоне присоединение других сахаров (ацетилирование).

    В АГ растительной клетки происходит синтез полисахаридов матрикса клеточной стенки (гемицеллюлозы, пектина). Диктиосома растительной клетки выделяет слизь. Целлюлоза синтезируется на поверхности плазмалеммы. Через КГ проходит 3 потока веществ. В цис- и средней зоне диктиосом все эти три потока идут без разделения, но они раздельно модифицируются. Сортировка белков происходит в транс-зоне, где имеет место механизм разделения.

    1) Гидролитические ферменты (гидролазы), которые направляются в компартмент лизосом.

    Известно, что только белки предшественники гидролаз имеют особую маннозную группу в своем составе. В цис-цистернах эти группы фосфолирируются. И далее, вместе с другими белками, переносятся от цистерны к цистерне в транс-участок. Мембраны транс-полюса содержат особый рецептор манноза-6-фосфат, который специфически узнает фосфолиророванные маннозные группировки элементов и взаимодействует с ними. Это связывание осуществляется при нейтральных значениях рН внутри цистерн транс-полюса. На мембранах пузырьков манноза-6-фосфатные рецепторы образуют группы, которые концентрируются в окаймленных клатрином пузырьках. Оторвавшись от трансполюса, эти пузырьки теряют клатрин, сливаются с эндосомами, перенося свои лизосомные ферменты (гидролазы), связанные с мембранными рецепторами в эту вакуоль. Внутри эндосом, благодаря работе протонного переносчика, происходит закисление среды и начиная с рН=6 лизосомные ферменты гидролазы отсоединяются от маноза-6-фосфата активируются и начинают работать. Участки же мембран, вместе с рецепторами, возвращаются путем рециклинга обратно в транссеть комплекса Гольджи.

      2) Белки, которые накапливаются в секреторных вакуолях и выделяются из клетки только при получении специальных сигналов. Это путь стимулируемой секреции. Считают, что та часть белков, которая накапливается в секреторных вакуолях и выводится из клетки после поступления сигнала либо нервного, либо гормонального, проходят такую же процедуру отбора сортировки на рецепторах цистерн комплекса Гольджи. Эти секреторные белки попадают сначала в мелкие вакуоли, которые тоже одеты клатрином. В секреторных вакуолях происходит агрегация накопленных белков в виде плотных секреторных гранул. Концентрация белка при этом в вакуолях повышается в 2000 раз по сравнению с концентрацией белка в цистернах комплекса.  Затем клатрин теряется, пузырьки объединяются. Секреторные вакуоли выбрасываются из клетки путем экзоцитоза после получения клеткой соответствующего стимула.

      3) Путь конститутивной (постоянной) секреции. Клетки могут постоянно выделять белки, которые связывают их с субстратами. Кроме того, непрерывно идет поток мембранных пузырьков к плазмолемме, в которых находятся элементы гликокаликса и мембранных протеинов. Этот поток не подлежит сортировке в рецепторной транс-системе комплекса Гольджи. Внешне они не отличаются от других пузырьков. Также являются окаймленными клатрином секреторными пузырьками.

     

    Функции комплекса Гольджи:

    1) Участие в сегрегации и накопление продуктов синтезированных в ЭПР;

    2) Участие в химических перестройках и созревании органики. Главным образом, это перестройка олигосахаридных компонентов гликопротеинов в составе водорастворимых секретов или в составе мембран;

    3) Это синтез полисахаридов, их взаимосвязь с белками, приводящая к образованию мукопротеинов, гликопротеинов;

    4) Выведение готовых секретов за пределы клетки;

    5) Источник клеточных лизосом.

     

    Лизосомы.

     

    Лизосомы не являются самостоятельными структурами клетки, т.к. они образуются за счет активности ЭПР и комплекса Гольджи. И в этом отношении они очень похожи на секреторные вакуоли. Основная их функция заключается в участии в процессах внутриклеточного расщепления, как экзогенных, так и эндогенных макромолекул.

    Открыты были французским ученым Де Дювом в 1955 году. Окружены одной липопротеидной мембраной. Содержат кислые гидролитические ферменты (гидролазы), расщепляющие все органические вещества. По специфичности делятся примерно на 40 видов, например, нуклеазы, гликозидазы, сульфидазы и т.д.

    Оптимум действия гидролаз рН = 5 (кислая среда). Самая характерная – кислая фосфотаза.

    Было высказано предположение, что, вероятнее всего, мембраны лизосом защищены от действия кислых гидролаз олигосахаридными участками, которые присоединяются к гидролазам в ЭПР в результате процесса первичного гликозелирования. Эти участки либо не узнаются гидролазами вообще, либо просто мешают гидролазам взаимодействовать с ними.

     

    Гидролазы обладают особенностями:

    1) Развитый рецепторный аппарат;

    2) За счет микротрубочек лизосомы очень активно перемещаются в клетке;

    3) Они способны к локальному разрушению мембраны при контакте с эндосомами.

     

    Лизосомы представлены несколькими фракциями. Подразделяются на первичные, вторичные, остаточные тельца (телосомы)  и аутофагосомы.

    Первичные лизосомы – мелкие мембранные пузырьки, около 100 нм, с бесструктурным содержимым, содержащим набор гидролаз. Их практически невозможно отличить от других секреторных пузырьков. Часть из них имеет клатриновую оболочку. Первичные лизосомы в дальнейшем сливаются с эндосомами, поступившими в клетку снаружи и образуют вторичную лизосому или внутриклеточную пищеварительную вакуоль. При слиянии первичной лизосомы с эндосомой происходит диссоциация комплекса манноза-6-фосфатного-рецептора гидролаза из-за кислой среды внутри вторичной лизосомы. Свободный фермент после потери фосфатной группы вступает в работу. Расщепляет полимеры до мономеров, затем происходит транспорт в состав гиалоплазмы клетки, где они включаются в процессы. Первичная лизосома может вновь слиться с эндосомой. Процесс слияния и переваривания - гетерофагицескай цикл.

    Однако переваривание и расщепление молекул может идти и не до конца. В этом случае, в полостях лизосом происходит накопление непереваренных продуктов и вторичная лизосома превращается в остаточное тельце или в тело лизосомы. Остаточные тельца уже содержат меньше гидролаз.  Они или остаются в клетке до ее гибели или выходят из клетки путем экзоцитоза. Там же происходит отложение пигмента. Например, у человека липофусцин (пигмент старения).

    Кроме гетерофагического цикла, в клетках происходит и аутофагический цикл, связанный с перевариванием собственных структур клетки. Аутофагосомы присутствуют и в клетках простейших, и в клетках растений, и у животных. По своей морфологии их относят к вторичным лизосомам, но с тем отличием, что в составе этих лизосом встречаются фрагменты или даже целые цитоплазматические структуры, такие как митохондрии, пластиды, элементы ЭПР, рибосомы, гранулы гликогена и другие вещества. Полагают, что процесс образование аутофагосом связан с выстраиванием вокруг клеточного органоида первичных лизосом, затем их слияние друг с другом. Таким образом они отделяют структуру, подлежащую перевариванию, от основной цитоплазмы.       Полагают, что аутофагосомы задействованы в процессе апоптоза (запрограммированная гибель). Такой функции подвергаются митохондрии печени, которые живут 9 – 10 суток. Установлено, что число лизосом увеличивается в клетке при патологии.

    Лизосомные накопления – первичная генная мутация, приводящая к потере активности отдельных ферментов, участвующих в функционировании лизосом.

     
    1   2   3   4   5   6   7   8   9


    написать администратору сайта