Физике. физика. Электродинамика Электрические токи в металлах, вакууме и газах. Электрический ток в жидкостях
Скачать 4.58 Mb.
|
5. Объяснение БКШ – теорией эффекта критического тока. У известных сверхпроводников величина энергетической щели составляет в среднем 2D = 3 мэВ » 5·10-22 Дж. Для разрушения куперовской пары один из электронов пары должен уменьшить энергию своего движения, по крайней мере, на величину 2D. Предположим, что электрон отдает эту энергию при лобовом столкновении с узлом решетки так, что после столкновения он отскакивает с той же скоростью дрейфа vд в обратном направлении. Энергия электрона до соударения Ек1 = me(vф + vд)2ç2, энергия после соударения Ек2 = me(vф - vд)2ç2. Здесь vф – тепловая скорость электронов на уровне Ферми (»106мçс), vд – скорость дрейфа электронов в электрическом поле, она не превышает 1 мçс. Убыль кинетической энергии электрона должна быть по крайней мере равной 2D. Так что DЕк= = 2mevфvд = 2D. (13.3) Отсюда, минимальная скорость дрейфа vд, необходимая для разрушения куперовской пары, есть vд = Dçmevф. (13.4) Плотность электронного тока проводимости естьj = envд, (13.5) где n – концентрация электронов проводимости в металле. Подставив критическую скорость дрейфа из (13.4), получаем критическую плотность тока jкр. jкр = envд= enDçmevф. (13.6) У типичных сверхпроводников n = 3·1028 м-3, vф = 106 мçс, 2D = 3 мэВ. Подставляем. jкр = =1012 . Это соответствует току 106 А через проводник сечением 1 мм2. Но в реальном сверхпроводнике ток течет лишь в тонком приповерхностном слое толщиной около 35 нм, что соответствует сечению S = 10-4 мм2. Поэтому критический ток в сверхпроводнике толщиной около 1 мм составляет всего лишь iкр = jкрS = 106 Аçмм2·10- 4 мм2 = 100 А. Это вполне соответствует эксперименту. 6. Объяснение БКШ-теорией критического магнитного поля. При помещении сверхпроводника в магнитное поле В в поверхностном слое сверхпроводника наводится незатухающий ток. Этот незатухающий ток имеет такие величину и направление, что его магнитное поле внутри сверхпроводника полностью компенсирует внешнее поле В. При увеличении поля В плотность компенсирующего тока в сверхпроводнике растет. Если внешнее поле В будет настолько большим, что плотность наведенного им индукционного тока достигнет критического значения, сверхпроводимость разрушается. Все выше сказанное относится к сверхпроводникам 1-го рода, в которых электрический ток существует только в приповерхностном слое. Несколько позже были открыты и изучены сверхпроводники 2-го рода. В них возникающие во внешнем магнитном поле В сверхпроводящие токи текут не только по поверхности, но и проникают в толщу проводника. У сверхпроводников 1-го рода критическое магнитное поле Вкр не превышает 0,1 Тл, а у сверхпроводников 2-го рода достигает величины Вкр» 20 Тл. 7. Эффекты Джозефсона объясняются БКШ - теорией как результат туннелирования куперовских пар через узкую щель между сверхпроводниками. Согласно теории, частота n переменного сверхпроводящего тока определяется выражением: n = . (13.7) При напряжении на щели U = 1 мВ частота n = 485 ГГц, что соответствует длине волны ЭМ излучения l = сçn = 0,6 мм. 8. Реактивное сопротивление сверхпроводника. При любой температуре Т < Ткр сверхпроводник практически всегда содержит как сверхпроводящие электроны концентрацией nc, так и нормальные (nн) электроны. Если поместить сверхпроводник в высокочастотное поле, то в этом переменном электрическом поле ускоряются не только куперовские пары, но и нормальные электроны. Поэтому ток имеет как сверхпроводящую, так и нормальную составляющую. Те и другие электроны обладают массой, вследствие их инерции ток отстает по фазе от напряженности ВЧ – поля. Куперовские пары движутся в проводнике как бы без трения. Согласно классической механике, скорость частиц в этом случае отстает по фазе от действующей на них периодической силы на pç2. Поэтому сверхпроводящая составляющая высокочастотного тока отстает от напряженности поля на pç2. Это значит, что куперовские пары создают чисто реактивное сопротивление. Нормальные электроны движутся как бы с трением. Поэтому они создают как реактивное, так и активное сопротивление. 3. Элементы зонной теории твёрдых тел. Свойства зон. Металлы, полупроводники, диэлектрики по зонной теории. Зонная теория позволила с единой точки зрения истолковать существование металлов, диэлектриков и полупроводников, объясняя различие в их электрических свойствах, во-первых, неодинаковым заселением электронами разрешенных зон, и во-вторых, шириной запрещенных зон. Рассматривая заполнение электронами разрешенных зон необходимо использовать два правила: 1) Электроны стремятся занять самые низкие энергетические уровни. 2) Принцип Паули: на одном энергетическом уровне не может быть более двух электронов. Эти электроны должны иметь разные спины. Степень заполнения электронами энергетических уровней в зоне определяется заполнением соответствующего атомного уровня. Если уровень атома полностью заполнен, то и зона полностью заполнена. Из незанятых уровней образуются свободные зоны, из частично заполненных – частично заполненные зоны. В общем случае можно говорить о валентной зоне, которая полностью заполнена и образовалась из энергетических уровней внутренних электронов свободных атомов и о зоне проводимости (свободной зоне), которая либо частично заполнена, либо свободна и образована из энергетических уровней внешних коллективизированных электронов изолированных атомов (рис.2).
Это означает, что возможны только внутризонные переходы, так как междузонные переходы имеют много большую энергию. Необходимым условием электрической проводимости является наличие в разрешенной зоне свободных энергетических уровней на которые электрическое поле сторонних сил могло бы перевести электроны. В зависимости от степени заполнения зон электронами и ширины запрещенной зоны возможны три случая, изображенных на рис.3.
3а). Зона проводимости заполнена лишь частично., то есть в ней имеются вакантные уровни. В этом случае электроны, получив сколь угодно малую энергетическую добавку (от поля или теплового движения) переходят на более высокий энергетический уровень той же зоны, то есть они участвуют в проводимости. Такой переход возможен, так как 1 К = 10-4 эВ, что много больше расстояния между уровнями равному 10-22 эВ. Таким образом, если в твердом теле имеется зона, лишь частично заполненная электронами, то это тело всегда будет проводником электрического тока. Именно это свойственно металлам. 3б). Возможно также такое перераспределение электронов между зонами, возникающими из уровней различных атомов, которое привело к тому, что вместо двух частично заполненных зон кристалла окажется одна целиком заполненная (валентная) зона и одна свободная зона (зона проводимости). Твердые тела, у которых энергетический спектр электронных состояний состоит только из валентной зоны и зоны проводимости, являются диэлектриками или полупроводниками в зависимости от ширины запрещенной зоны. Если ширина запрещенной зоны кристалла порядка нескольких электрон –вольт, то тепловое движение не может перебросить электроны из валентной зоны в зону проводимости и кристалл является диэлектриком, оставаясь им при всех реальных температурах. 3в). Если запрещенная зона достаточно узка ( эВ), то переход электронов из валентной зоны в зону проводимости может быть осуществлен сравнительно легко путем теплового возбуждения, либо за счет внешнего источника, способного передать электронам энергию , и кристалл является полупроводником. Различие между металлами и диэлектриками с точки зрения зонной теории состоит в том, что при 0 К в зоне проводимости металлов имеются электроны, а в зоне проводимости диэлектриков они отсутствуют. Различие же между диэлектриками и полупроводниками определяется шириной запрещенных зон: для диэлектриков она довольно широка (например для NaCl =6 эВ), а для полупроводников достаточно узка (для германия =0,72 эВ). При температурах близких к 0 К полупроводники ведут себя как диэлектрики, то есть переброс электронов в зону проводимости не происходит. Сущность зонной теории проводимости заключается в следующем: 1). При объединении атомов в кристалл твердого тела возникают энергетические зоны. 2). Ширина запрещенных зон и характер заполнения электронами разрешенных зон обуславливают электрические свойства твердого тела – оно может быть или металлом, или полупроводником, или диэлектриком. 4.Люминисценсция твердых тел. В природе давно известно излучение, отличное по своему характеру от всех известных видов излучения (теплового излучения, отражения, рассеяния света и т.д.). Этим излучением является люминесцентное излучение, примерами которого может служить свечение тел при облучении их видимым, ультрафиолетовым и рентгеновским излучением, -излучением и т. д. Вещества, способные под действием различного рода возбуждений светиться, получили название люминофоров. Люминесценция — неравновесное излучение, избыточное при данной температуре над тепловым излучением тела и имеющее длительность, большую периода световых колебаний. Первая часть этого определения приводит к выводу, что люминесценция не является тепловым излучением (см. § 197), поскольку любое тело при температуре выше 0 К излучает электромагнитные волны, а такое излучение является тепловым. Вторая часть показывает, что люминесценция не является таким видом свечения, как отражение и рассеяние света, тормозное излучение заряженных частиц и т. д. Период световых колебаний составляет примерно 10-15с, поэтому длительность, по которой свечение можно отнести к люминесценции, больше—примерно 10-10 с. Признак длительности свечения дает возможность отличить люминесценцию от других неравновесных процессов. Так, по этому признаку удалось установить, что излучение Вавилова — Черенкова (см. § 189) нельзя отнести к люминесценции. В зависимости от способов возбуждения различают: фотолюминесценцию (под действием света), рентгенолюминесценцию (под действием рентгеновского излучения), катодолюминесценцию (под действием электронов), электролюминесценцию (под действием электрического поля), радиолюминесценцию (при возбуждении ядерным излучением, например -излучением, нейтронами, протонами), хемилюминесценцию (при химических превращениях), триболюминесценцию (при растирании и раскалывании некоторых кристаллов, например сахара). По длительности свечения условно различают: флуоресценцию (t £ 10-8с) и фосфоресценцию — свечение, продолжающееся заметный промежуток времени после прекращения возбуждения. Первое количественное исследование люминесценции проведено более ста лет назад Дж. Стоксом (Дж. Стокc (1819—1903) — английский физик и математик), сформулировавшим в 1852 г. следующее правило: длина волны люминесцентного излучения всегда больше длины волны света, возбудившего его (рис. 326). С квантовой точки зрения правило Стокса означает, что энергия падающего фотона частично расходуется на какие-то неоптические процессы, т. е. откуда < или > , что и следует из сформулированного правила. Основной энергетической характеристикой люминесценции является энергетический выход, введенный С. И. Вавиловым в 1924 г.— отношение энергии, излученной люминофором при полном высвечивании, к энергии, поглощенной им. Типичная для органических люминофоров (на примере раствора флуоресцина) зависимость энергетического выхода от длины волны , возбуждающего света представлена на рис. 327. Из рисунка следует, что вначале растет пропорционально , а затем, достигая максимального значения, быстро спадает до нуля при дальнейшем увеличении (закон Вавилова). Величина энергетического выхода для различных люминофоров колеблется в довольно широких пределах, максимальное ее значение может достигать примерно 80 %. Рис. 327 Рис. 328 Твердые тела, представляющие собой эффективно люминесцирующие искусственно приготовленные кристаллы с чужеродными примесями, получили название кристаллофосфоров. На примере кристаллофосфоров рассмотрим механизмы возникновения люминесценции с точки зрения зонной теории твердых тел. Между валентной зоной и зоной проводимости кристаллофосфора располагаются примесные уровни активатора (рис.328). При поглощении атомом активатора фотона с энергией электрон с примесного уровня переводится в зону проводимости, свободно перемещается по кристаллу до тех пор, пока не встретится с ионом активатора и не рекомбинирует с ним, перейдя вновь на примесный уровень. Рекомбинация сопровождается излучением кванта люминесцентного свечения. Время высвечивания люминофора определяется временем жизни возбужденного состояния атомов активатора, которое обычно не превышает миллиардных долей секунды. Поэтому свечение является кратковременным и исчезает почти вслед за прекращением облучения. Для возникновения длительного свечения (фосфоресценции) кристаллофосфор должен содержать также центры захвата, или ловушки для электронов, представляющие собой незаполненные локальные уровни (например, Л1 и Л2), лежащие вблизи дна зоны проводимости (рис. 329). Они могут быть образованы атомами примесей, атомами в междоузлиях и т. д. Под действием света атомы активатора возбуждаются, т. е. электроны с примесного уровня переходят в зону проводимости и становятся свободными. Однако они захватываются ловушками, в результате чего теряют свою подвижность, а следовательно, и способность рекомбинировать с ионом активатора. Освобождение электрона из ловушки требует затраты определенной энергии, которую электроны могут получить, например, от тепловых колебаний решетки. Освобожденный из ловушки электрон попадает в зону проводимости и движется по кристаллу до тех пор, пока или не будет снова захвачен ловушкой, или не рекомбинирует с ионом активатора. В последнем случае возникает квант люминесцентного излучения. Длительность этого процесса определяется временем пребывания электронов в ловушках. Явление люминесценции получило широкое применение в практике, например люминесцентный анализ — метод определения состава вещества по характерному его свечению. Этот метод, являясь весьма чувствительным (примерно 10-10 г/см3), позволяет обнаруживать наличие ничтожных примесей и применяется при тончайших исследованиях в биологии, медицине, пищевой промышленности и т. д. Люминесцентная дефектоскопия позволяет обнаружить тончайшие трещины на поверхности деталей машин и других изделий (исследуемая поверхность покрывается для этого люминесцентным раствором, который после удаления остается в трещинах). Люминофоры используются в люминесцентных лампах, являются активной средой оптических квантовых генераторов (см. § 233) и сцинтилляторов (будут рассмотрены ниже), применяются в электронно-оптических преобразователях (см. § 169), употребляются для создания аварийного и маскировочного освещения и для изготовления светящихся указателей различных приборов. 5. Термоэлектрические явления Явление Зеебека. Явление Пельтье, Томпсона. Работа термоэлектрических холодильных машин и генераторов базируется на термоэлектрических явлениях. К их числу относятся эффекты Зеебека, Пельтье и Томсона. Эти эффекты связаны, как с превращением тепловой энергии в электрическую, так и с превращением энергии электрического тока в холод. Термоэлектрические свойства проводников обусловлены связями между тепловыми и электрическими потоками: эффект Зеебека — возникновение термо-ЭДС в цепи неоднородных проводников, при различных температурах ее участков; эффект Пельтье — поглощение или выделение тепла на контакте двух различных проводников при пропускании через них постоянного электрического тока; эффект Томсона — поглощение или выделение тепла (сверхджоулевого) в объеме проводника при пропускании через нега пост, электрического тока при наличии градиента температур. Эффект Зеебека, Пельтье и Томпсона относятся к числу кинетических явлений. Они связаны с процессами перемещения заряда и энергии, поэтому их часто называют явлениями переноса. Направленные потоки заряда и энергии в кристалле порождаются и поддерживаются внешними силами: электрическим полем, градиентом температуры. Направленный поток частиц (в частности, носителей заряда - электронов и дырок) возникает также при наличии градиента концентрации этих частиц. Магнитное поле само по себе не создает направленных потоков заряда или энергии, однако влияет на потоки, создаваемые другими внешними воздействиями. |