EvTeam all in the last night. Все способы оперативной неподготовке к колкам и прочее за какчество не ручаемся
Скачать 378.5 Kb.
|
EVteam. www.bsmu.h15.ru evTeam - all in the last night. Все способы оперативной неподготовке к колкам и прочее за какчество не ручаемся… I. Иммунология. Определение, задачи, методы. История развитии иммунологии. Иммунология — междисциплинарная медицинская наука, изучающая строение, эволюцию и функционирование иммунной системы различных организмов (человека, животных, растений), механизмы и способы защитных реакций, направленных на сохранение их структурной и фунциональной целостности и биологической индивидуальности. Иммунология выделилась в самостоятельную науку более 100 лет тому назад. Не основоположниками являются французский химик Луи Пастср, положивший начало вакцинопрофилактике инфекционных заболеваний с помощью живых вакцин; русский биолог Илья Мечников -сформулировавший основы фагоцитарной теории (клеточного иммунитета);немецкий химик Пауль Эрлих и немецкий врач Робет Кох. За короткую историю иммунология выросла в самостоятельную отрасль с самостоятельными институтами, журналами, национальными и международными обществами. В настоящее время выделяют общую и частную (прикладную) иммунологию. Общая, или фундаментальная, иммунология подразделяется на молекулярную иммунологию, клеточную иммунологию, иммуногенетику, иммунотолерантность, иммунохимию, иммунокиберпетнку, эволюционную иммунологию, физикохимическую иммунологию. Она изучает структуру и функцию молекул, клеток и органов иммунной системы. функционирование последней как единой гомеостатической. самоуправляемой системы, а также ее связи с другими системами — нервной, эндокринной и тд. Важными направлениями частной иммунологии являются иммунопрофилактика, инфекционная иммунология, иммунопатология, иммунобиотехнология. трансплантационная иммунология, иммунология репродукции, клиническая, ветеринарная, экологическая и трансгенная иммунология, иммуногенотерапия. Ее основная цель- изучение патогенеза иммунозависимых заболеваний, разработка на основе теоретических подходов иммунобиологических профилактических и терапевтических препаратов (вакцин, иммуноглобулинов, цитокинов и их смесей — коктейлей, рецепторов и др.). Основные задачами: изучение строения, функции и развития иммунной системы при патологии и в норме: изучение роли иммунной системы в возникновении и развитии инфекционных и неинфекционных болезней;разработка и использование методов иммунодиагностики, иммунопрофилактики и иммунотерапии инфекционных и неинфекцнонных заболеваний человека. Meтоды иммунологии: иммуноморфологический; иммунохимический: иммуиобиологический, экспериментальный. 2. Иммунная система организма. Характеристика. Органы, иммунокомпетентные клетки. Иммунная система людей и животных обеспечивает специфическую защиту организма от генетически чужеродных молекул и клеток, в том числе от всевозможных инфекционных агентов — бактерий, вирусов, грибов и простейших. Клетки и молекулы иммунной системы обладают способностью распознавать чужеродные антигены инфекционных агентов, отличать их от антигенов собственных клеток и биополимеров, что в конечном итоге приводит к их уничтожению или удалению, т. е. к сохранению постоянства внутренней среды организма. Иммунная система обладает «памятью», которая позволяет быстро и эффективно удалять повреждающий чужеродный агент при повторном его распознавании. В то же время наличие естественной иммунологической толерантности к собственным антигенам предотвращает развитие самоповреждающих иммунологических реакций. Понятием «иммунная система» подчеркивается единство разных органов и клеток, связанных общностью происхождения, функциональным взаимодействием и общими механизмами регуляции. К центральным органам иммунной системы человека относятся костный мозг и тимус (вилочковая железа), в которых происходят пролиферация и дифференцировка иммунокомпетентных клеток: Т- и В-лимфоцитов Вилочковая железа (тимус). Предшественники Т-лимфоцитов образуются из стволовых клеток костного мозга, которые поступают в тимус. В корковом слое тимуса происходит образование малых лимфоцитов (тимоцитов), которые активно размножаются. Кортикальные лимфоциты являются незрелыми клетками. Под влиянием гормонов тимуса и факторов микроокружения они дифференцируются в зрелые Т-лимфоциты, мигрируя в мозговой слой тимуса, а затем в кровь. Лимфоидная паренхима тимуса достигает максимального развития к 17 годам, а затем уменьшается, но полностью не исчезает. Костный мозг. В костном мозге содержатся стволовые кроветворные клетки, являющиеся родоначальниками всех форменных элементов крови, в том числе лимфоцитов. В ретикулярной строме костного мозга происходит дифференцировка В-лимфоцитов, которые созревают до малых лимфоцитов из клеток-предшественников. Периферические лимфоидные органы. К ним относятся многочисленные скопления лимфоидной ткани, располагающиеся под слизистыми оболочками желудочно-кишечного, дыхательного и мочеполового трактов (групповые лимфатические фолликулы, миндалины и др.), лимфатические узлы и селезенка. В периферических лимфоидных органах происходят пролиферация и дифференцировка лимфоцитов под влиянием антигена, поступившего в организм. В лимфатических узлах, селезенке, миндалинах, групповых лимфатических фолликулах имеются две зоны. Одна из них называется тимусзависимой, поскольку там расселяются Т-лимфоциты, другая В-зависимой, в которой располагаются В-лимфо-циты. В этих зонах происходят антигензависимая пролиферация и дифференцировка данных клеток и их кооперация. 3. Молекулы иммунной системы - CD-антигены, рецепторы, молекулы I, II, III классов ГКГС, адгезины, суперсемейство иммуноглобулинов. Установлено, что на поверхности клеток имеются дифференцировочные антигены, разные не только у разных типов клеток, но и у одного типа клеток на разных стадиях дифференцировки. Клеточные поверхностные молекулы, идентифицированные с помощью моноклональных антител, известны как "Claster of differentiation" - кластер дифференцировки, и эти антигены имеют числовую нумерацию: CD3, CD4, CD8, CD20, CD56 и т.д. Антигены главного комплекса гистосовместимости (МНС). МНС у человека называются HLA. Антигены МНС I класса имеют все ядросодержащие клетки, а МНС II класса - только антигенпрезентирующие клетки. Антигены МНС I и II классов участвуют в презентации (представлении) клетками антигенного пептида Т-лимфоцитам: продукты МНС I класса презентируют (представляют) антигенный пептид CD8+ Т-лимфоцитам, а МНС II класса CD4+ Т-лимфоцитам. Имеются неклассические молекулы МНС, или МНС-подобные (например, CD1). Выявлено участие растворимых молекул I класса в различных этапах иммунного ответа: а) связывании антиНLАантител; б) ингибиции цитотоксичности аутореактивных Т-лимфоцитов; с) формировании иммунологической толерантности. Молекулы II класса распознавания являются продуктами DR, DQ и DP генов, гетеродимеры тяжелой (а) и легкой (в) гликопротеидных цепей. Молекулярная масса альфа цепи 30-34 кДа, а бeта - 26-29 кДа. Внеклеточная часть молекулы представлена al и а2, или в1 и в2 и соединена небольшой трансиенбранной областью (30 аминокислот) и коротким цитоплазматическин доменом (15 аминокислот). Они экспрессированы преимущественно на мембране иммунокомпетентных клеток. Антигены МНС I класса имеют все ядросодержащие клетки, а МНС II класса - только антигенпрезентирующие клетки. Антигены МНС I и II классов участвуют в презентации (представлении) клетками антигенного пептида Т-лимфоцитам: продукты МНС I класса презентируют (представляют) антигенный пептид CD8+ Т-лимфоцитам, а МНС II класса CD4+ Т-лимфоцитам. 4. Цитокины. Определение Классификация. Клетки-продуценты. Биологическая роль Клиническое использование. Хемокины. Цитокины - разнообразная, группа растворимых межклеточных коммуникационных молекул пептидной природы, обладающих регуляторными и эффекторными свойствами, которые продуцируются стимулированными клетками. Они регулируют рост, дифференциацию и функцию многих типов клеток, улучшают кооперацию между ними и определяют спектр их биологической активности. Активность цитокинов проявляется локально в очень низких концентрациях (пико- и наномолярных) и важна в механизмах воспаления, естественного и приобретенного иммунитета. Классификация цитокинов. Основные группы цитокинов: Интерфероны, Интерлейкины, Фактор некроза опухолей, Колониестимулирующиефакторы, Ростовые факторы. В зависимости от типа клеток, продуцирующих цитокины, их делят на монокины (ИЛ-1, ФНО), синтезируемые моницитами, макрофагами, и лимфокины (ИЛ-2, ИЛ-4, ИЛ-5, ИЛ-10 и др.), синтезируемые лимфоцитами. Биосинтез и механизм действия питокинов. Цитокины синтезируются клетками-продуцентами после их взаимодействия со стимуляторами. Молекулы стимуляторов связываются с мембранными рецепторами клетки, вызывая тем самым ее активацию (изменение биохимических процессов, экспрессию определенных генов, в том числе и кодирующих цитокины), биосинтез и секрецию определенного спектра цитокинов. Биологические эффекты цитокинов весьма разнообразны. Интерфероны^ В ответ на адсорбцию на мембране клеток-мишеней-вирусных частиц или их стимуляцию вирусной нуклеиновой кислотой, а также другими стимуляторами интерферон-а секретируется мононуклеарными клетками (моноцитами и лимфоцитами). ИНФ- р* продуцируется фибробластами и некоторыми эпителиальными клетками после их стимуляции эндотоксинами бактерий, ФНО и ИЛ-1. у-интерферон продуцируется Т-лимфоцитами. Особую роль в этом играют Т-хелперы первого типа (Тп1). Поскольку интерфероны проявляют неспецифическую противовирусную активность, то они являются наиболее важным элементом естественного иммунитета организма. Интерфероны, продуцируемые инфицированными клетками (обычно ИНФ- Р), индуцируют состояние противовирусной резистентности окружающих клеток и организма в целом. Основное противовирусное действие интерферонов заключается ингибиции трансляции вирусной мРНК. Интерферон связывается с соответствующим рецептором на мембране клеток мишеней. Это связывание вызывает дерепрессию нескольких генов, которые детерминируют вирусные ингибиторные белки, которые блокируют трансляцию вирусной мРНК, но не мРНК клетки хозяина. Противовирусные эффекты интерферонов а и Рг очень близки. Оба типа интерферонов нашли клиническое применение для лечения вирусных инфекций.Биологические эффекты у-интерферона отличаются принципиально. Он синтезируется в процессе иммунного ответа в результате антигенспецифического распознавания и активации соответствующих клонов Т-лимфоцитов хелперов первого типа. Данная субпопуляция Т-хелперов является наиболее важным элементом клеточного иммунного ответа и отвечает за реализацию реакций гиперчувствительности замедленного типа (ГЗТ). Этот механизм формирования специфической резистентности особенно важен для защиты организма от внутриклеточных патогенов, таких как микобактерии, листерии и, безусловно, вирусы, у - интерферон способен стимулировать противомикробную активность макрофагов и естественных киллеров. Интерлейкины - низкомолекулярные пептиды, выполняющие функцию коммуникационных сигнальных биомолекул между различными популяциями лейкоцитов. Факторы некроза опухолей (ФНО) Колониестимулирующие факторы (КСФ) - группа цитокинов, которые образуются многими типами клеток в тканях или крови, а свою специфическую биологическую активность проявляют в костном.мозге, где стимулируют кроветворение.. Все это обусловило успех клиническому внедрению препаратов КСФ-1 для быстрого восстановления лейкопоэза после высокодозовой химиотерапии, после трансплантации костного мозга и лечения солидных опухолей. Колониестимулирующий фактор гранулоцитов (КСФ-Г). Ростовые факторы. Большая и разнородная группа факторов, объединенных способностью определять способности эмбриогенеза, заживления ран и репарации тканей. К ним относятся: трансформирующий ростовой фактор, фактор роста фибробластов, фактор роста нервов, и др. Хемокины - низкомолекулярные цитокины, ответственные за хемотаксис клеток (привлекают в очаг воспаления лимфоциты и лейкоциты). 5. Иммунитет, виды иммунитета. Отличительные черты естественного (врожденного) и приобретенного иммунитета. Характеристика противоинфекционного иммунитета. Под иммунитетом понимают совокупность биологических явлений (процессов и механизмов), направленных на сохранение постоянства внутренней среды организма (гомеостаза) и защиту организма от инфекционных и других генетически чужеродных для него агентов. Виды иммунитета: Иммунитет:
Естественный, или видовой, иммунитет представляет собой невосприимчивость одного вида животных или человека к микроорганизмам, вызывающим заболевания у других видов. Примером естественного (видового) иммунитета является невосприимчивость человека к чуме собак, рогатого скота и другим заболеваниям животных, которые в свою очередь не чувствительны к возбудителям гонореи, менингита, корн и др. Естественный иммунитет является наиболее совершенной и прочной формой невосприимчивости. Приобретенным иммунитетом называют такую невосприимчивость организма человека или животных к инфекционным агентам, которая формируется в процессе его индивидуального развития и характеризуется строгой специфичностью. Так, человек, в детстве переболевший корью или ветряной оспой или другим инфекционным заболеванием, как правило, приобретает к нему невосприимчивость. При этом он сохраняет чувствительность к другим возбудителям инфекционных болезней. Может быть активным и пассивным. Инфекционный иммунитет сохраняется в организме в течение того времени, пока в нем находится возбудитель соответствующего заболевания. 6. Естественный иммунитет. Определение. Факторы неиммунной и иммунной природы и их характеристика. Иммунитет естественный — невосприимчивость организма к возбудителям инфекционных заболеваний видовая. В основе лежат естественные неспецифические механизмы, обеспечивающие резистентность к широкому кругу патогенов [таблица]
Важные для защиты физиологические факторы: Температура тела - многие микробы плохо растут при 37°С Кислород - высокое парциальное содержание кислорода угнетает рост микробов (анаэробов) в тканях легких Гормональный баланс (избыточное выделение гормонов - стероидов - резко снижает защитные функции организма) Возраст: дети до трех лет и пожилые люди - старше 75 лет - более подвержены инфекциям из-за ослабления иммунитета. Преодолев защитные механизмы барьерных органов, микроорганизмы сталкиваются со специализированными факторами второго эшелона обороны - гуморальными и клеточными механизмами неспецифического (врожденного) иммунитета. 7.Комплемент, путн активации, функции. Значение в противоинфекционной защите. Методы определений активности и показатели. Система комплемента - совокупность белков сыворотки крови, связанных каскадом последовательной активности при их взаимодействии с комплексом антиген-антитело - (классический путь), либо со структурами полисахаридной природы (альтернативный путь). Классическая система комплемента состоит из 9 компонентов (от CI до С9) и трех регулирующих гомеостаз системы белков (ингибитора CI эстеразы, инактиватора СЗб и инактиватора С6). Третий компонент (СЗ) является центральным белком всей системы и его количество в сыворотке составляет примерно 75%всей массы белков комлемента. Альтернативный путь активации включает белки (факторы) В и Д, а также пропердии. Для функционирования классического пути активации комплемента необходимы ионы Ca2+, a альтернативного Mg2+. Процесс активациитомплемента протекает стадийно с образованием ферментных комплексов, которые действуют на последующий компонент. При этом из нативных молекул отдельных компонентов образуются многие биологически активные соединения, играющие важную роль в развитии воспаления, иммунного ответа, аллергии, а также в резистентности к инфекции. Для осуществления бактериолиза или цитолиза требуется активация компонентов комплемента от СЗ до С9 по классическому или альтернативному пути. В роли опсонинов выступают большие фрагменты СЗб, С4б - адсорбируясь на поверхности клеток, они усиливают фагоцитарную реакцию, способствуют иммунному прилипанию комплекса АГ-АТ-комплемент к поверсности иммунокомпетентных клеток (В-лимфоциты). Низкомолекулярныё фрагмента -полипептиды - СЗа, С5а способствуют высвобождению биогенных аминов (гистамина, серотонина) из тучных клеток, вызывают сокращение гладкой мускулатуры, повышают сосудистую проницаемость, вызывают хемотаксис нейтрофилов и моноцитов в очаг воспаления. Компоненты CI-C4 нейтрализуют некоторые вирусы. Синтез белков комплемента осуществляется клетками системы мононуклеарных фагоцитов, фибластов, печенью. У человека встречаются генетические дефекты по большинству компонентов комплемента. Клинически они проявляются в форме синдрома системной красной волчанки, рецидивирующих пиогенных инфекций, ангионевротическим отеком. Данные о функциональной активности белков комплемента и их концентрации дают очень важную информацию о протекании заболевания, могут быть использованы для оценки тяжести течения, эффективности терапевтических мероприятий, прогноза заболевания. МЕТОДЫ ИССЛЕДОВАНИЯ СИСТЕМЫ КООМПЛИМЕНТА I. Определение общей гемолитической активности классического пути. Сыворотку крови разводят физиологическим раствором 1:10 и вносят в пробирки в объеме от 0,05 до. 0,5 мл. Объем проб доводят до 1,5 мл физиологическим раствором и вносят по 1,5 мл гемолитической системы (смесь равных объемов 3% взвесей бараньих эритроцитов и гемолитической сыворотки). Пробирки инкубируют при 37°С 45 минут,- охлаждают при 4°С для остановки реакции и центрифугируют при 1500 оборотов 4-5 минут. После центрифугирования определяют объем сыворотки, вызывающий лизис 50% сенсибилизированных эритроцитов (условную гемолитическую единицу активности комлемента - СН 50), затем рассчитывают количество СН 50 на мл цельной сыворотки. У здоровых людей титр комлемента (СН 50 на мл) составляет примерно 40-60 СН 50. Гемолитическую активность альтернативного пути комлемента определятт также, но вместо сенсибилизированных бараньих эритроцитов используют несенсибилизированные кроличьи эритроциты и физиологический раствор, содержащий ионы Mg, но без Са для блокирования классического пути активации. 2.0пределение функциональной активности отдельных компонентов. Этот метод позволяет определить численность функционально активных молекул в I мл сыворотки крови. Для этого к сенсибилизированным эритроцитам добавляют реагент на определенный компонент комплемента ( в качестве реагента используют либо смесь компонентов комлемента, исключая искомый, либо сывоттку крови, лишенную активности этого компонента. Сыворотку для титрования компонентов классического пути разводят в 40-50 -раз, а альтернативного - в 5-7 раз. Таким образом можно установить дефект определенных компонентов и определить профиль комплемента при различных заболеваниях. 3. Иммунохимическое определение концентрации компонентов комплемента. Данный метод исследования позволяет определить концентрацию каждого из белков комплемента, используя антисыворотки (антитела) к ним. Концентрация белков выражается в г\л. Для определения используют .метод радиальной иммунрдиФФузии в arap^B^Mjgjie^ 4 Определение активности комплемента и его компонентов методом радиального гемолиза в агаровом геле. Гемолитическую систему смешивают с расплавленным агаром в соотношении 1:7 и быстро выливают в стерильные чашки Петри. После застывания в агаре проделывают лунки диаметром 4.мм- (до 15 лунок на 1-ой чашке). Лунки заполняются испытуемыми сыворотками и помещают чашки в холодильник при 4°С на 21 час для диффузии белков комплемента в агар. Затем чашки помещают в термостат на 60 минут для проявления зон гемолиза. Критерием активности комплемента служит квадрат диаметра зон гемолиза. |