Главная страница

Физиология это наука о жизнедеятельности человеческого организма, о деятельности его отдельных органов и систем органов. Физиология для медицины


Скачать 0.56 Mb.
НазваниеФизиология это наука о жизнедеятельности человеческого организма, о деятельности его отдельных органов и систем органов. Физиология для медицины
Дата03.05.2021
Размер0.56 Mb.
Формат файлаdocx
Имя файлаfiza_1-12.docx
ТипДокументы
#200991
страница4 из 23
1   2   3   4   5   6   7   8   9   ...   23

Законы раздражения

1. Закон силы раздражения:
Чем больше сила раздражения, тем, до известных пределов, сильнее ответная реакция.
Раздражители имеют нижний предел - подпороговое раздражение не вызывает ответной реакции. Возбудимые ткани работают только на пороговых и надпороговых раздражителях.
Но есть сила раздражения для любого биологического раздражителя, которая способна вызывать max эффект - оптимальная сила (оптимум частоты и силы раздражения).
Если сила больше, чем оптимальная, то ответная реакция ниже - пессимум частоты или силы раздражения.

2. Закон длительности раздражения:
Чем длительнее раздражение, необходимое для возникновения возбуждения, тем сильнее, до известных пределов, ответная реакция живых систем.
Есть зависимость между силой раздражения и временем, в течение которого этот раздражитель должен действовать, чтобы вызвать ответную реакцию. Зависимость выражается гиперболой, следовательно, даже сильные раздражители, действуя кратковременно, либо не способны вызвать ответную реакцию, либо - слабую ответную реакцию и наоборот.
График "сила-время"
Особенно чётко зависимость между силой и временем в прослеживается в диапазоне промежуточных величин.

3. Закон градиента силы:
Величина ответной реакции и её характер зависят ещё и от интенсивности/крутизны/ нарастания действия силы.
Более интенсивное нарастание силы раздражения вызывает больший ответ. При этом длительное действие раздражителей одной и той же по величине силы, приводит к развитию аккомодации - явления, которое выражается в понижении чувствительности ткани к раздражению, уменьшению возбудимости ткани. Механизм этого явления бкдет рассмотрен в следующей лекции.

4. Закон "всё или ничего":
Если раздражитель меньше пороговой силы, он никогда не вызовет ПД (потенциал действия) - "ничего". Но какой бы силы ни был надпороговый раздражитель, он всегда будет вызывать max для данного состояния электрическую реакцию, т.е. max пик ПД - "всё".
Ответная реакция, её характер зависят от скорости химических процессов обеспечивающих ответные реакции, так называемые скорости активационных и инактивационных /восстановительных/ процессов. Введенский назвал свойство клеток, тканей, связанное со скорость активационных и инактивационных процессов - лабильность (функциональная подвижность)-свойство клетки, ткани, отражающее их максимальные возможности.

АККОМОДАЦИЯ— процесс приспособления возбудимой ткани к постепенно нарастающей силе раздражителя, проявляющийся в постепенном повышении порога раздражения. В наст, время предложено более конкретное объяснение механизма А., основанное на изменении ионных потоков при возбуждении. Как известно, возникновение потенциала действия при электрическом раздражении связано с изменением величины мембранного потенциала движения ионов натрия внутрь нервного волокна (см. Биоэлектрические потенциалы). Это явление в свою очередь зависит от того, что при раздражении повышается проницаемость мембраны для всех ионов, и в первую очередь для ионов натрия. Развитие потенциала действия прекращается тогда, когда поток ионов натрия внутрь волокна уравновешивается потоком ионов калия, движущихся изнутри наружу. При медленно нарастающей крутизне раздражающего стимула инактивация потока ионов натрия происходит раньше, чем мембранный потенциал достигнет пороговой величины, и потенциал действия не возникает. В нек-рых условиях при медленном нарастании раздражающего стимула потенциал действия может быть вызван лишь при значительном повышении силы раздражения.

12.Действие постоянного тока на живые ткани. Электротон. Катэлектротон. Анэлектротон. Законы Пфлюгера. Анодный блок и католическая депрессия.

Постоянный ток на ткань оказывает два вида действия: 1. Возбуждающее действие; 2. Электротоническое действие.

1. Возбуждающее действие оказывает ток пороговой силы и описывается тремя законами Пфлюгера:

1. При действии постоянного порогового тока на ткань возбуждение возникает только в момент замыкания цепи или в момент размыкания цепи, или при резком изменении силы тока.
2. Возбуждение возникает при замыкании под катодом, а при размыкании – под анодом.
3. Порог катодзамыкательного действия меньше, чем порог анодразмыкательного действия.


При длительном действии сильного постоянного тока возникнет два состояния:
1.Под катодом – катодическая депрессия.
2.Под анодом – анодный блок.

Главным признаком катодической депрессии и анодного блока является снижение возбудимости и проводимости до нулевого уровня. Однако биологическая ткань при этом остается живой.

2. Электротоническое действие постоянного тока на ткань.
Под электротоническим действием понимают такое действие постоянного подпорогового тока на ткань, которое приводит к изменению физических и физиологических свойств ткани. Различают: 1.Физический электротон. 2. Физиологический электротон.

Под физическим электротоном понимают изменение физических свойств мембраны, возникающее под действием постоянного тока - изменение проницаемости мембраны,критического уровня деполяризации.

Под физиологическим электротоном понимают изменение физиологических свойств ткани. А именно - возбудимости, проводимости под действием электрического тока.

Электротон разделяют на анэлектротон и катэлектротон.

Анэлектротон - изменения физических и физиологических свойств тканей под действием анода.Каэлектротон - изменения физических и физиологических свойств тканей под действием катода.

Анэлектротон– это снижение возбудимости ткани под анодом вследствие частичной гиперполяризации при действии на нее постоянного подпорогового электрического тока.

Катэлектротон – это увеличение возбудимости ткани под катодом вследствие частичной деполяризации при действии на нее постоянного подпорогового электрического тока.

13. Лабильность, парабиоз и его фазы. Общебиологическое значение учения о парабиозе.

Лабильность(функциональная подвижность) – свойство клетки, ткани, отражающее их максимальные возможности.
Мера лабильности - это максимальная частота, которую способна воспроизвести ткань или клетка. Частота раздражения близкая или совпадающая, т.е. оптимум. Раздражение выше по силе или по частоте лабильности данной ткани вызывает снижение ответа – пессимум.

ПАРАБИОЗ
Парабиоз
(около жизни) -это состояние возбудимой ткани, возникающее под влиянием сильных раздражений и характеризующееся нарушением проводимости и возбудимости. (Н.Е.Введенский 1901 г.). Он возникает при действии на нервы парабиотических раздражителей (аммиак, кислота, жирорастворители, КCl и т.д.), этот раздражитель меняет лабильность, снижает ее.

Фазы парабиоза:
1. Уравнительная фаза парабиоза. Сильный раздражитель дает сильный ответ, а меньший - меньший. Здесь наблюдаются одинаково слабые ответы на различные по силе раздражители.

2. Вторая фаза - парадоксальная фаза парабиоза. Сильный раздражитель дает слабый ответ, слабый - сильный ответ.

3. Третья фаза - тормозная фаза парабиоза. И на слабый и на сильный раздражитель ответа нет. Это связано с изменением лабильности.

Первая и вторая фаза - обратимые, т.е. при прекращении действия парабиотического агента ткань восстанавливается до нормального состояния, до исходного уровня. Третья фаза - необратимая, тормозная фаза через короткий промежуток времени переходит в гибель ткани.

Механизмы возникновения парабиотических фаз:
1. Развитие парабиоза обусловлено тем, что под действием повреждающего фактора происходит снижение лабильности, функциональной подвижности. Это лежит в основе ответов, которые называют фазы парабиоза.

2. В нормальном состоянии ткань подчиняется закону силы раздражения. Чем больше сила раздражения, тем больше ответ. Существует раздражитель, который вызывает максимальный ответ. И эту величину обозначают как оптимум частоты и силы раздражения. Если эту частоту или силу раздражителя превысить, то ответная реакция снижается. Это явление - пессимум частоты или силы раздражения.

3. Величина оптимума совпадает с величиной лабильности. Т.к. лабильность - это максимальная способность ткани, максимально большой ответ ткани. Если лабильность меняется, то величины, на которых вместо оптимума развивается пессимум, сдвигаются. Если изменить лабильность ткани, то та частота, которая вызывала оптимум ответа, теперь будет вызывать пессимум.

Биологическое значение парабиоза
1. Показал, что явление смерти не мгновенно, существует переходный период между жизнью и смертью.
2. Этот переход осуществляется пофазно.
3. Первая и вторая фазы обратимы, а третья не обратимая.


Эти открытия привели в медицине к понятиям - клиническая смерть, биологическая смерть.
Клиническая смерть
- это обратимое состояние.

Биологическая смерть - необратимое состояние.

Как только сформировалось понятие "клиническая смерть", то появилась новая наука – реаниматология.


14.Нейрон как структурная и функциональная единица ЦНС, его физиологические свойства и взаимосвязь с глиальными клетками.

Нейрон - это структурно-функциональная единица нервной ткани. Это специализированная клетка, которая, наряду с общими физиологическими свойствами (возбудимость, проводимость), обладает и рядом специфических свойств. А именно:
1. Воспринимать информацию (переводить информацию раздражителя на биологический язык клетки).
2. Обрабатывать информацию (т.е. проводить анализ информации, синтез - соединение различных частей информации после анализа с получением нового качества).
3. Кодировать информацию (превращать информацию в форму удобную для хранения в мозге).
4. Формировать командный управляющий сигнал, который распространяется на другие клетки (нейроны, мышечные клетки).
5. Передача информации нейрона на другие структуры.

Нейроны способны контактировать с другими клетками и оказывать на них информационное воздействие (место контактов - синапс).

Все свои виды деятельности нейрон осуществляет за счёт 3-х физиологических свойств (помимо возбудимости и проводимости):
1. Рецепция;
2. Электрогенез;
3. Нейросекреция.


Функционально нейроны делятся на три типа:
- афферентные (чувствительные);
- промежуточные (вставочные) нейроны (формируют ЦНС);
- эфферентные (отправляют к периферическим органам команды ЦНС).

Рецепторная функция нейронов…
Рецептором в нейроне называются специализированные образования, предназначенные для восприятия клетками (нейронами) или всей нервной системой действия раздражителей.

Различают два типа рецепторов:
1. Сенсорные рецепторы.
2. Клеточные химические рецепторы.

Сенсорные рецепторы - это нервные окончания, чувствительные участки нейрона, которые способны воспринимать другие нехимические виды раздражения.
Например, рецепторы давления, температурные рецепторы, рецепторы сдвига и т.д., для которых раздражителем является нехимическая молекула.

Кроме того, все рецепторы делят на первично-чувствительные и вторично-чувствительные.
Первично-чувствительные рецепторы - это рецепторы нейронов, которые воспринимают химические и др. виды раздражения (давления, температуры и т.д.).
Вторично-чувствительные рецепторы - это специализированные нервные клетки, функцией которых является восприятие раздражения и передача его на афферентные окончания нейрона.

Все рецепторы (первично-чувствующие, вторично-чувствующие) можно разделить на экстерорецепторы и интерорецепторы.
Экстерорецепторы
- это такие образования нейрона, которые воспринимают раздражения, поступающие из внешней среды.
Интерорецепторы
- это такие рецепторы, которые постоянно собирают информацию о деятельности внутренних органов и о состоянии внутренней среды организма.

Интерорецепторы делятся на множество групп:
1) проприорецепторы (они заложены в мышцах и сухожилиях);
2) ангиорецепторы (рецепторы, располагающиеся в сосудистом русле);
3) тканевые рецепторы (специальные образования, отслеживающие внутренний гомеостаз, постоянства внутренней среды организма);


Все рецепторы обладают чувствительностью. Чувствительность рецепторов характеризуется порогом чувствительности.
Под порогом чувствительности понимают
минимальную силу раздражителя, которая способна вызвать формирование рецепторного или генераторного потенциала. Возникновение рецепторного потенциала, т.е. электрического явления на рецепторе связано с тем, что раздражитель вызывает частичную деполяризацию мембраны. Это приводит к вхождению небольшой порции натрия (Na) локально в области рецептора из окружающей среды в нейрон, и в мембране рецептора возникает частичная деполяризация - это и есть генераторный или рецепторный потенциал. Он не распространяется, лишь суммация (временная или пространственная) позволяет нескольким рецепторным потенциалам сформировать потенциал действия, и он (потенциал действия) распространяется по нервным волокнам.

Под действием раздражителей рецепторы могут изменять свои свойства. Одним из таких проявлений является адаптация рецепторов.

Под адаптацией рецепторов понимают изменение их чувствительности при длительном действии раздражителя.

По адаптивным способностям рецепторы различают:
1) слабо-адаптирующиеся (они служат для восприятия истинных, абсолютных, мгновенных значений раздражителя);
2) быстро- и полностью адаптирующиеся рецепторы (они воспринимают информацию об изменении стимула на фоне спонтанной импульсации).

Функционально рецепторы делятся на:
а)Мономодальные рецепторы
- это такие рецепторы, для которых специфическим (т.е. родным) является только один раздражитель.
б)Бимодальные рецепторы
- это такие рецепторы, которые формируют два ощущения (т.е. рецепторы воспринимают две модальности - температуру и боль, ощущение сдвига и боль и т.д.).
в)Полимодальные рецепторы
- это рецепторы, которые воспринимают несколько раздражителей, как специфические.

Рецепторы бывают спонтанно-активные и молчащие.
Спонтанно-активные рецепторы
- это такие рецепторы, которые, мониторируя процесс, постоянно генерируют импульсы и посылают их в ЦНС.
Молчащие рецепторы
- это такие рецепторы, которые, мониторируя процесс, посылают импульсы в ЦНС только тогда, когда имеются отклонения от нормальной деятельности.

Интенсивность воздействия на рецепторы кодируется 2-мя способами:
1. Числом потенциалов действия от рецептора за единицу времени.
2. Числом рецепторов, а значит и нервных волокон, вовлечённых в процесс восприятия (чем больше рецепторов вовлечено в процесс восприятия, тем больше стимул, который поступает в ЦНС).

Рецепторы почти всегда передают свою информацию на нервные проводники. Такими нервными проводниками являются периферические отростки нейронов. Они делятся на два типа:
1) афферентные проводники (дендриты);
2) эфферентные проводники (аксон).

Между нейронами и глиальными клетками существуют сообщающиеся между собой щели размером 15-20 нм, так называемое интерстициальное пространство , занимающее 12-14% общего объема мозга ( рис. 1-18 ). Во время потенциала действия концентрация ионов калия в интерстициальном пространстве может возрастать, что может вызвать значительную деполяризацию нервных клеток . В результате активного транспорта ионов калия его внеклеточная концентрация может стать ниже нормальной, что вызывает гиперполяризацию нервных клеток .

Глиальные клетки имеют высокую проницаемость для ионов калия. Когда несколько глиальных клеток деполяризуются вследствие местного повышения концентрации ионов калия, между деполяризованными и недеполяризованными клетками возникает ток, создающий вход ионам калия в деполяризованные глиальные клетки, в результате чего внеклеточная концентрация ионов калия уменьшается. Благодаря высокой проницаемости глиальных клеток для ионов калия и электрическим связям между ними глиальные клетки действуют как буфер в случае повышения внеклеточной концентрации калия. Данных об активном поглощении ионов калия путем ионного насоса в глиальных клетках нет, хотя, возможно, они активно поглощают нейромедиаторы в некоторых синапсах , ограничивая таким образом время действия медиатора .

15. Распространение возбуждения по безмиелиновым и миелиновым нервным волокнам. Законы проведения возбуждения по нервным волокнам. Классификация нервных волокон по скорости проведения возбуждения

Безмиелиновые нервные волокна имеются, главным образом, у вегетативных нейронов. Осевой цилиндр как бы прогибает плазматическую мембрану (оболочку) нейролеммоцита, которая смыкается над ним. Сдвоенная над осевым цилиндром мембрана нейролеммоцита получила название мезаксон. Под шванновской клеткой остается узкое пространство (10-15 нм) , содержащее тканевую жидкость, участвующую в проведении нервных импульсов. Один нейролеммоцит окутывает несколько (до 5-20) аксонов нервных клеток. Оболочку отростка нервной клетки образуют многие шванновские клетки, располагающиеся последовательно одна за другой.

Миелиновые нервные волокна толстые, они имеют толщину до 20 мкм. Эти волокна образованы довольно толстым аксоном клетки - осевым цилиндром. Вокруг аксона имеется оболочка, состоящая из двух слоев. Внутренний слой, миелиновый, образуются в результате спирального накручивания нейролеммоцита (шванновской клетки) на осевой цилиндр (аксон) нервной клетки. Миелин представляет собой многократно закрученный двойной слой плазматической мембраны (оболочки) нейролеммоцита. Толстая и плотная миелиновая оболочка, богатая жирами, изолирует нервное волокно и предотвращает утечку нервного импульса из аксолеммы (оболочки аксона) . Снаружи от миелинового находится тонкий слой, образованный самой цитоплазмой нейролеммоцитов. Дендриты миелиновой оболочки не имеют. Каждый нейролеммоцит (шванновская клетка) окутывает по длине только небольшой участок осевого цилиндра. Поэтому миелиновый слой не сплошной, прерывистый. Через каждые 0,3-1,5 мм имеются так называемые узловые перехваты нервного волокна (перехваты Ранвье) , где миелиновый слой отсутствует. В этих местах соседние нейролеммоциты (шванновские клетки) своими концами подходят непосредственно к осевому цилиндру. Перехваты Ранвье способствует быстрому прохождению нервных импульсов по миелиновым нервным волокнам. Нервные импульсы по миелиновым волокнам проводятся как бы прыжками - от перехвата Ранвье к следующему перехвату. Скорость проведения нервных импульсов по безмиелиновым волокнам составляет 1-2 м/с, а по мякотным (миелиновым) - 5-120 м/с. По мере удаления от тела нейрона скорость проведения импульса уменьшается.
1   2   3   4   5   6   7   8   9   ...   23


написать администратору сайта