Главная страница

Физиология это наука о жизнедеятельности человеческого организма, о деятельности его отдельных органов и систем органов. Физиология для медицины


Скачать 0.56 Mb.
НазваниеФизиология это наука о жизнедеятельности человеческого организма, о деятельности его отдельных органов и систем органов. Физиология для медицины
Дата03.05.2021
Размер0.56 Mb.
Формат файлаdocx
Имя файлаfiza_1-12.docx
ТипДокументы
#200991
страница9 из 23
1   ...   5   6   7   8   9   10   11   12   ...   23

Механизм действия. Проникает в клетку двумя путями. Большая часть молекул гормона легко проникает через цитоплазматическую мембрану.
Они взаимодействуют со специфическим рецептором в цитозоле, образуя комплекс гормон-рецептор. Часть молекул проходит предварительный этап взаимодействия с рецепторами цитоплазматической мембраны.
Цитозольный комплекс гормон-рецептор проходит через мембрану ядра, где образуется комплекс гормона с ядерным рецептором.
Образовавшийся комплекс гормон-ядерный рецептор осуществляет регуляторное влияние на процесс транскрипции и, как следствие, на синтез белков.
Большая часть образовавшихся под влиянием кортизола белков - это внутриклеточные ферменты, которые и реализуют метаболические эффекты гормона на углеводный, белковый и жировой обмен, а также существенно изменяют чувствительность тканей к инсулину (понижение чувствительности) и катехоламинам (повышение чувствительности).
Под влиянием кортизола образуются липокортины, которые интерокринным (внутриклеточно) и аутокринным (взаимодействуя с мембранным рецептором к липокортину) путями подавляют активность фосфолипазы А2. Угнетение активности фосфолипазы А2, уменьшая образование в клетке простагландинов и леикотриенов. Этот механизм важен для понимания противовоспалительного действия глюкокортикоидов.

Половые гормоны вырабатываются сетчатой зоной коры надпочечников.
К ним относятся андрогены, эстрогены и прогестерон. Играют важное значение в развитии вторичных половых признаков в детском возрасте - в этот период внутрисекреторная функция половых желез слабо выражена. При достижении половой зрелости роль гормонов сетчатой зоны коры надпочечников невелика. Эти гормоны вновь приобретают некоторое значение в старческом возрасте - после угасания функции половых желез.

Гормоны мозгового вещества надпочечников
Мозговое вещество надпочечников состоит из хромоффинных клеток,по существу это 2 нейроны симпатической нервной системы, огромный симпатический ганглий вынесеный на периферию /иннервируется только преганглионарными волокнами СНС/. 2 отличия- клетки надпочечников: 1) синтезируют больше адреналина, чем норадреналина/6:1/,чем нейроны симпатической нервной системы, 2) выделяют гормоны непосредственно в кровь. Гормоны мозгового вещества-катехоламины образуются из аминокислоты тирозина, далее ДОФА-дофамин-норадреналин-адреналин.

Катехоламины – гормоны срочной адаптпции,главные гормоны борьбы/агрессии/ и обороны, гормоны первой фазы стресс-реакции/фазы тревожности/.
Катехоламины обладают мощным катоболическим эффектом:
Ускоряет окислительные процессы в тканях, повышает потребление кислорода, Активирует расщепление гликогена, Активирует распад жиров, усиливает окисление жирных кислот, Интенсифицирует энергетический обмен

Физиологические эффекты
Зависят от того какой вид адренорецепторов преобладает в той или иной структуре. Возбуждение альфа-адренорецепторов вызывает:
-сужение мелких артериальных сосудов кожи и органов брюшной полости /как следствие повышение АД/.
-сокращение матки.
-расширение зрачка.
-раслабление гладких мышц желудка и кишечника/ как следствие тормрзится пищеварение/.
-ускорение агрегации тромбоцитов

Возбуждение бета-адренорецепторов вызывает:
Стимуляцию возбудимости, проводимости и сократимости миокарда/как следствие учащение и усиление сердечных сокращений/.Стимуляцию секреции ренина. Расширение бронхов/ повышается эффективность дыхания/. Расширение некоторых артериальных сосудов/коронарных/ например/. Расслабление матки.
Т.Е. адренэргическое влияние на органы обеспечивает необходимые условия для решения задач срочной адаптации.

36.Эндокринная функция поджелудочной железы и ее роль в регуляции обмена веществ.
Это железа смешанной секреци. Поджелудочная железа, как железа внутренней секреции, продуцирует два основных гормона - инсулин и глюкагон. Инсулин продуцирует бета-клетками, а глюкагон - альфа-клетками островков Лангерганса.

Эффекты инсулина
Инсулин оказывает влияние на все виды обмена веществ, он способствует анаболическим /синтез/процессам, усиливает синтез гликогена, жиров, белков, тормозит эффекты гормонов обладающих катоболическим действием/катехоламины, глюкокортикоиды, глюкогон и др/

Эффекты инсулина по скорости реализации делят на четыре группы
1 очень быстрые (через несколько секунд)- 1.1.повышение проницаемости клеточных мембран для глюкозы, 1.2.активация калий -натриевого насоса/избыток К закачивается в клетку и удаляются из клетки дополнительные порции Na / и как следствие частичная гиперполяризация мембран клеток за исключением гепатоцитов/.
2.быстрые эффекты (в течение нескольких минут)-2.1.активация ферментов, усиливающих анаболические процессы, 2.2.торможение ферментов, ответственных за катоболические процессы
3.медленные эффекты (в течение нескольких часов)- 3.1.повышение проницаемости мембран для аминокислот, 3.2.усиление синтеза иРНК и ферментов синтеза белков
4.очень медленные эффекты (от часов до суток) активация митогенеза и размножения клеток

Действие инсулина на углеводный обмен
1 увеличение проницаемости клеточных мембран для глюкозы,
2 увеличение транспорта глюкозы из крови в клетки,
3 гипогликемия/как следствие 1 и 2/,
4 активация процессов гликолиза,
5 усиление процессов фосфолирирования,
6 стимуляция синтеза гликогена,
7 торможение распада гликогена, 8 угнетение глюконеогенеза

Действие инсулина на белковый обмен
1 повышение проницаемости мембран для аминокислот,
2 усиление синтеза иРНК,
3 активация в печени синтеза аминокислот,
4 повышение активности ферментов синтеза белков,
5 торможение активности ферментов расщепляющих белки

Влияние инсулина на жировой обмен
1 стимуляция синтеза свободных жирных кислот из глюкозы,
2 стимуляция синтеза триглицеридов ,
3 активация окисления кетоновых тел в печени,
4 подавление распада жира

Регуляция инкреции инсулина
Главным регулятором является глюкоза, активирующая в бета –клетках аденилатциклазы, что в конечном итоги приводит к выбросу инсулина из гранул бета- клеток в кровь. Вегетативная нервная система – парасимпатическая и ацетилхолин- стимулируют выброс инсулина в кровь, симпатическая и норадреналин- тормозят этот процесс.
При недостатке инсулина в организме развивается сахарный диабет.

Эффекты глюкагона
1. Усиливает гликогенолиз в печени и мышцах,
2. Способствует глюконеогенезу.
3. Гипергликемия,
4. Активирует липолиз/ лизис/,
5. Подавляет синтез жира.
6. Увеличивает систез кетоновых тел в печени,
7.Угнетает их окисление,
8.Стимулирует катоболизм/распад/ белков в тканях, прежде всего в печени,
9.Увеличивает синтез мочевины

Увеличение глюкозы в крови тормозит выделение гормона, уменьшение- стимулирует выброс его в кровь, Симпатическая нервная система и катехоламины стимулируют выброс глюкогона в кровь, а парасимпатическая-тормозит.

ИНСУЛИНОВЫЙ РЕЦЕПТОР
Главную роль в формировании эффектов инсулина играет фосфорилирование внутриклеточных белков-субстратов инсулинового рецептора (IRS), основным из которых является IRS-1.
Рецептор к инсулину обладает тирозинкиназной активностью. Он состоит из двух α-субъединиц и двух β-субъединиц, которые связаны между собой дисульфидными связями и нековалентными взаимодействиями.
На поверхности мембраны находятся α-субъединицы с доменом для связывания с инсулином, β-субъединицы пронизывают бислой мембраны и не взаимодействуют непосредственно с инсулином.
Каталитический центр тирозинкиназной активности находится на внутриклеточном домене находится β-субъединиц.
Взаимодействие инсулина с α-субъединицами рецептора приводит к фосфорилированию β-субъединиц рецептора, в таком состоянии они способны фосфорилировать другие внутриклеточные белки, изменяя тем самым их функциональную активность.
Фосфорилирование ИРФ-1 повышает активность этого белка и позволяет ему активировать различные цитозольные белки - ферменты.
Это проводит к активации нескольких сигнальных путей и каскадов специфических протеинкиназ (фосфолипаза Ср, Ras-белок, Raf-1 протеинкиназа, митогенактивируемые про-теинкиназы (МАПКК, МАПК), фосфолипаза А2), вызывает фосфорилирование ферментов, факторов транскрипции (ПСАТ), обеспечивая многообразие эффектов инсулина.

Эти процессы осуществляют каскадно.
В настоящее время установлено, что один из цитозоль-ных белков присоединяется к уже фосфорилированному рецептору инсулина. Образовавшийся комплекс взаимодействует с Ras-белком.
Активированный R-белок активирует протеинкиназу Raf-1.
Эта протеинкиназа активирует протеинкиназу МАПКК, МАПК, что в конечном счете вызывает длительные эффекты инсулина через активацию ПСАТ.
Таким образом, инсулин реализует свое действие через различные пути внутриклеточного проведения сигнала. Именно это и обеспечивает многообразие эффектов инсулина.

Рецепторы к глюкогону.
Рецепторы к глюкогону находятся в цитоплазматиче-ских мембранах клеток печени, мышц. Они (рецепторы к глюкогону) ассоциированы с G-белком.
При формировании комплекса глюкогон-рецептор субъединица Gas взаимодействует с аденилатциклазой и активирует ее.
Активация аденилатциклазы приводит к увеличению содержания цАМФ в цитозоле, который в свою очередь активирует протеинкиназу А. Она (протеинкиназа А) активирует комплекс внутриклеточных ферментов, обеспечивающих реализацию эффектов глюкогона.




37.Половые железы. Мужские и женские половые гормоны, их физиологическая роль в формировании пола и регуляции процессов размножения. Эндокринная функция плаценты.

Женские половые железы…
Половые гормоны вырабатываются в гонадах - половых железах: у мужчин - в семенниках, у женщин - в яичниках. Гонады являются железами смешанной секреции. Половые гормоны необходимы для полового созревания и развития вторичных половых признаков. половые гормоны различаются по химическому строению:
1. Стероидные гормоны: а) Андрогены - тестостерон, андростерон, б) Эстрогены - эстрон, эстриол, эстрадиол, в) Прогестерон
2. Пептидные гормоны: а) мужские – ингибин, б) женские - релаксин

В норме в организме обеих полов образуются и мужские и женские половые гормоны.

Эстрогены в женском организме в значительных количествах вырабатываютя клетками гранулеза фоликулов/ у мужчин в незначительном количестве-клетками Сертоли/, представлены в основном эстрадиолом, в меньшем количестве синтезируется эстрон. Они вызывают следующие физиологические эффекты: активирует синтез РНК, обеспечивают процессы половой дифференцировки в эмбриональном периоде, половое созревание, развитие первичных и вторичных женских половых признаков, установление женского полового цикла, обеспечивает рост мышцы и железистого эпителия матки, развитие молочных желез, обладают более слабым анаболическим действием, чем андрогены, подавляют резорбцию костной ткани, тормозят анаболический эффект андрогенов.

Эстрогены участвуют
1) в формировании полового поведения,
2) в овогенезе,
3) в процессе оплодотворения и имплантации оплодотворенной яйцеклетки в слизистую матки,
4) в развитии и дифференцировке плода/материнские эстрогены/,
5) в развитии родового акта

Прогестерон- вырабатывается клетками желтого тела/немного клетками гранулезы/- является гормоном сохранения беременности/гестагеном/: ослабляет готовность мускулатуры матки к сокращению, стимулирует овуляцию, тормозит пролиферацию эндометрия, необходим для создания баланса между возбуждением и торможением в ЦНС, препятствует развитию депрессии, раздражительности и плаксивости, которые могут развиться при недостаточности ПГ

Пептидные половые гормоны. Релаксин - продуцируется клетками желтого тела, в матке. Его эффект заключается в расслаблении связок малого таза. Его продукция усиливается в период родов. Ингибин - угнетает сперматогенез при длительном воздержании.

Эндокринная функция плаценты. В плаценте из эстрона образуется эстриол, кроме того плацента синтезирует прогестерон, которые выполняют присущие им функции/см. половые гормоны/ а так же хорионический гонадотропин, который участвует 1.В регуляции дифференцировки и развития плода, также влияет на организм матери, вызывая: Задержку воды и солей. Усиление секреции вазопрессина /задняя доля гипофиза/. Активацию механизмов иммунитета.

Механизм действия:
Эстрогены являются стероидными гормонами. Они обладают выраженным геномным действием.
Эстрогены влияют на процесс транскрипции и, как следствие, активируют синтез более 50 белков. Эти белки обеспечивают основные биологические функции эстрогенов, реализацию репродуктивных функций женского организма. За счет геномного влияния эстрогены оказывают на организм анаболическое действие, которое хотя и значительно менее выражено, чем таковое у андрогенов, но играет существенное значение. Негеномное действие эстрогенов проявляется в торможении активности ферментов катаболизма, что приводит к задержке азота, воды и солей в организме.
Эстрогены способны опосредованно активировать NО-синтазу, что приводит к внутриклеточному образованию оксида азота. Они оказывают выраженное дилятаторное действие на гладкую мускулатуру кровеносных сосудов. Прогестерон обладает геномым действием, влияя на транскрипцию и, как следствие, на синтез белков, действие которых обеспечивает основной диапазон действия этого гормона.

Мужские половые железы…
Эффекты стероидных половых гормонов:
Андрогены в мужском организме вырабатываются в семенниках /в клетках Сертоли/, представлены тестостероном, который вызывает следующие эффекты: активирует синтез РНК, обеспечивает процессы половой дифференцировки в эмбриональном периоде, обеспечивает развитие первичных и вторичных мужских половых признаков, формирование структур ЦНС, обеспечивающих половое поведение, формирование структур ЦНС, обеспечивающих половые функции, генерализованное анаболическое действие, обеспечивающее рост скелета, мускулатуры тела, распределение подкожного жира, торможение катаболического действия глюкокортикоидов, регуляция сперматогенезе, участвуют в формировании полового поведения

Механизм действия:
Мужские половые гормоны обладают выраженным геномным действием.
Они являются сильным регулятором транскрипции и, как следствие, синтеза белков. Андрогены, наряду с важной ролью в реализации репродуктивной функции мужского организма, обладают выраженным анаболическим действием, которое значительно превышает таковое у других гормонов и поэтому используется в клинической практике.

38. Понятие о крови, ее свойства и функции. Состав крови. Основные физиологические константы плазмы крови. Электролитный состав плазмы. Осмотическое давление. Органические вещества в плазме крови, их характеристика и функциональное значение. Белки плазмы крови, их характеристика и функциональное значение. Онкотическое давление, его физиологическая роль.
Кровь - это жидкая ткань, относится к соединительной ткани.

Представление о крови как системе создал наш соотечественник Г.Ф. Ланг (1939).
Система крови включает:
а) периферическую кровь
б) органы кроветворения
в) органы кроверазрушения
г) депо крови

Функции крови:
1. Транспортная включает:
а) дыхательную
б) трофическую
в) экскреторную
г) обеспечение водно-солевого баланса
2. Терморегуляторная - кровь универсальный термообменник
3. Защитная,
а) гуморальный иммунитет /наличием антител/
б) клеточной защитой/клеточный иммунитет/

4. Регуляторная, заключается в транспорте гормонов и других биологически активных веществ
5. Поддержание гомеостаза
6. Обеспечение креаторных связей

Объем крови 6-8% от массы тела/4-6 литров/. Понятие о нормо-, гипер- и гиповолемии.

Состав крови
Кровь состоит из плазмы и форменных элементах. Плазма - жидкая часть крови. Форменные элементы: эритроциты, лейкоциты, тромбоциты.

Гематокрит - объемное соотношение между плазмой и форменными элементами. На долю форменных элементов приходится 40-45% крови, на плазму - 55-60%.

Вязкость плазмы крови - 1,7-2,2. Вязкость цельной крови 5.
Согласно закона Пуазейля - с уменьшением диаметра трубки вязкость увеличивается.
Кровь является неоднородной неньютоновской жидкостью и ведет себя иначе.
Эффект Фареуса-Лундквиста. В капиллярах менее 150 микрон вязкость крови начинает снижаться. Этот эффект обусловлен образованием пристеночного слоя плазмы, в котором вязкость ниже чем в цельной крови и осевым положением эритроцитов в мелких сосудах. Эритроциты как бы находятся в среде с низкой вязкостью.

Осмотическое давление - 7,6 атм. На 60% обусловлено Na. Понятие об изо-, гипер- и гипотонических растворах.

Осмотическое давление, создаваемое белками, (т. е. их способностью притягивать воду), называется онкотическим давлением.

Абсолютное количество белков плазмы крови равно 7—8 % и почти в 10 раз превосходит количество кристаллоидов, но создаваемое ими онкотическое давление составляет лишь 1/200 осмотического давления плазмы (равного 7,6 атм), т.е. 0,03—0,04 атм (25—30 мм рт. ст.). Это обусловлено тем, что молекулы белков очень велики и число их в плазме во много раз меньше числа молекул кристаллоидов.

В наибольшем количестве содержатся в плазме альбумины. Величина их молекулы меньше, чем молекулы глобулинов и фибриногена, а содержание заметно больше, поэтому онкотическое давление плазмы более чем на 80 % определяется альбуминами.

Несмотря на свою малую величину, онкотическое давление играет решающую роль в обмене воды между кровью и тканями. Оно влияет на процессы образования тканевой жидкости, лимфы, мочи, всасывания воды в кишечнике. Крупные молекулы белков плазмы, как правило, не проходят через эндотелий капилляров. Оставаясь в кровотоке, они удерживают в крови некоторое количество воды (в соответствии с величиной их онкотического давления).
1   ...   5   6   7   8   9   10   11   12   ...   23


написать администратору сайта