Главная страница

Тесты по физиологии. Физиология крови и лимфы


Скачать 324.7 Kb.
НазваниеФизиология крови и лимфы
АнкорТесты по физиологии
Дата09.02.2021
Размер324.7 Kb.
Формат файлаdocx
Имя файлаEKZAMEN_FIZA_2021.docx
ТипДокументы
#175017
страница6 из 23
1   2   3   4   5   6   7   8   9   ...   23

3) Период расслаблени: его длительность несколько больше, чем укорочения (0,05-0.06 сек.)

В режиме одиночного сокращения мышца способна работать длительное время без утомления, но его сила незначительна. Поэтому в организме такие сокращения встречаются редко, например, так могут сокращаться быстрые глазодвигательные мышцы, мышцы сгибателей пальцев. Чаще одиночные сокращения суммируются.

Суммация– это сложение двух последовательных сокращений при нанесении на нее двух пороговых или сверхпороговых раздражений, интервал между которыми меньше длительности одиночного сокращения, но больше продолжительности рефракторного периода.

Виды:

- неполная суммация: возникает в том случае, если повторное раздражение наносится на мышцу, когда она уже начала расслабляться

- полная возникает тогда, когда повторное раздражение действует на мышцу до начала периода расслабления, т.е. в конце периода укорочения.

Увеличение или уменьшение амплитуды связано с изменением возбудимости в процессе возбуждения и зависит от того в какую фазу измененной возбудимости наносится следующее раздражение.

Учитывая, что в скелетной мышце процесс возбуждения продолжается около 8 мс (латентный период ПД - 2,5 мс плюс пиковый потенциал – около 5 мс), становится понятным, что укорочение мышечного волокна начнется тогда, когда быстрая деполяризация произойдет приблизительно на 1/3 от амплитуды пикового потенциала.

Известно, что в период формирования пикового потенциала возбудимость ткани снижена (фаза абсолютной и фаза относительной рефрактерности). Поэтому, если следующее раздражение будет наноситься в этот период, то амплитуда мышечного сокращения будет снижена.

Период возбуждения в скелетной мышце завершается следовой деполяризацией, продолжающейся от 20 до 40 мс.

В этот период возбудимость, а, следовательно, и сократимость повышена. Поэтому, если следующее раздражение будет приходиться на этот период, то амплитуда мышечного сокращения будет возрастать (тем больше, чем больше повышена возбудимость).

Тетаническое сокращение - это длительное сокращение мышц, возникающее в условиях повторных возбуждений, следующих друг за другом с малым интервалом времени

Различают два вида тетануса: зубчатый и гладкий.

В их основе лежат механизмы частичной или полной суммации.

Вид тетанического сокращения определяется Механическим состоянием мышцы в момент повторного возбуждения. Состоянием возбудимости мышцы в момент повторного возбуждения.

Зубчатый тетанус развивается на ряд последовательных раздражений, интервал между которыми больше продолжительности фазы сокращения, но меньше продолжительности одиночного мышечного сокращения (интервал от 100 до 50 мс при частоте раздражений от 10 до 20 Гц).

При этом каждое новое сокращение формируется на фоне не завершившегося расслабления мышцы, образуя новые вершины последующих сокращений («зубцы»). Высота суммарного сокращения зависит от ритма и силы раздражений и определяется исходным уровнем формирования каждого следующего сокращения (чем выше уровень, тем больше амплитуда).

В начале фазы расслабления этот уровень выше, чем в конце.

Гладкий тетанус развивается на ряд последовательных раздражений, интервал между которыми меньше длительности фазы сокращения, но больше продолжительности потенциала действия (интервал от 50 до 5 мс при частоте 20 до 200 Гц).

Каждое новое сокращение формируется на фоне не завершившегося сокращения мышцы, образуя единую, гладкую вершину. Ее высота определяется уровнем измененной возбудимости в процессе возбуждения.

Если каждый следующий раздражитель попадает в фазу экзальтации (повышенной возбудимости), то амплитуда сокращения будет большой.

Если импульсы попадают в период сниженной возбудимости (относительная рефрактерность), то амплитуда будет снижена.

Явление изменения амплитуды в зависимости от возбудимости мышцы объяснил H.Е.Введенский, введя понятие оптимума и пессимума.

Оптимум - это тетаническое сокращение максимальной амплитуды.

Оптимальная частота – максимальная частота раздражений, при которой возникает максимальная амплитуда тетанического ответа.

Пессимум – снижение амплитуды тетанического сокращения при увеличении частоты раздражений (выше оптимальной величины).

Пессимальная частота – максимальная частота (сверх оптимальной), при которой возникает минимальная амплитуда тетанического ответа.

7. Ультраструктура миофибрилл. Сократительные белки (актин, миозин).

Регуляторные белки (тропонин, тропомиозин) в составе тонких

протофибрилл. Теория сокращения мышц (роль ионов Са++).

Структурной единицей мышечного волокна являются миофибриллы.

Они разделены на чередующиеся участки (диски), которые обладают различными оптическими свойствами.

Диски, обладающие двойным лучепреломлением, получили название анизотропные (А) диски.

Диски, которые не обладают двойным лучепреломлением, названы изотропные (I) диски.

Анизотропные диски в обыкновенном свете выглядят темными и состоят из двух темных полосок, разделенных светлой "H" полоской.

Изотропные диски в обыкновенном свете выглядят светлыми и в середине имеют темную "Z" полоску.

Z полоска – эта тонкая мембрана, которая является продолжением поверхностной мембраны вглубь мышечного волокна.

Она выполняет опорную функцию, поскольку через ее поры проходят протофибриллы.

В зоне Z мембраны также находятся триады или Т-системы триады представляют выпячивания плазматической мембраны с образованием поперечных трубочек в виде ярусов и цисцерн.

Они предсталяют саркоплазматический ретикулум, который содержит высокую концентрацию ионов Ca.

При возбуждении Z мембраны кальций по концентрационному градиенту выходит из саркоплазматического ретикулума в протофибриллярное пространство, вызывая процесс сокращения Активная реабсорбция ионов Са в саркоплазматический ретикулум за счет работы Са-насоса, приводит к расслаблению мышечного волокна.

Тропомиозин - это регуляторный белок актиновой нити, представляющий собой вытянутую в виде тяжа молекулу.Две его полипептидные цепи как бы обвивают актиновые нити. На концах каждой молекулы тропомиозина расположены белки тропониновой системы, наличие которой характерно только для поперечно-полосатых мышц.

Тропонин - это глобулярный белок актиновой нити. Он состоит из трех субъединиц.Тропонин Т(ТнТ) обеспечивает связывание белков с тропомиозином.

Структурной единицей миофибриллы являются протофибриллы

Протофибриллы включают белковые нити актина и миозина, а также белки тропонин и тропомиозин.

Нити миозина – это толстые и короткие нити, которые входят только в состав анизотропного диска.

Нити актина – это тонкие и длинные нити, входящие в состав как изотропного, так и анизотропного дисков. Они вставлены между нитями миозина. От них свободна только H-полоска анизотропного диска.

Процесс сокращения происходит в результате скольжения нитей актина относительно нитей миозина, который запускается накоплением Са++, при этом образуются актино-миозиновые комплексы (мостики) и нити актина вдвигаются в промежутки между нитями миозина.

Нити актина сближаются друг с другом.

Ширина H-полоски и анизотропных дисков уменьшается, изотропный диск своего не изменяет своего размера.

Механизм мышечного сокращения и расслабления.

1. Раздражение.

2. Возникновение потенциала действие.

3. Проведение возбуждения вдоль клеточной мембраны до Z мембраны, а далее вглубь волокна по трубочкам саркоплазматического ретикулума.

4. Освобождение Са из триад.

5. Диффузия Са к протофибриллам.

6. Взаимодействие Са с тропонином.

7. Конформационное изменение комплекса тропомиозин-тропонин.

8. Освобождение активных центров актина.

9. Присоединение актина к миозину.

10. В присутствии белка актомиозина распад АТФ с освобождением энергии.

11. Скольжение нитей актина относительно миозина.

12. Укорочение миофибриллы.

13. Активация кальциевого насоса.

14. Ресинтез АТФ.

15. Понижение концентрации свободных ионов Са в саркоплазме.

16. Разрушение актин-миозиновых комплексов.

17. Обратное скольжение нитей актина относительно миозина.

18. Увеличение (восстановление) миофибриллы.

8. Строение и функции нервных волокон. Механизм и скорость проведения возбуждения по мякотным и безмякотным нервным волокнам. Значение перехватов Ранвье. Законы проведения возбуждения по нервам.

Нейроны– это основная структурно-функциональная единица нервной системы, обладающая специфическими проявлениями возбудимости. Нейрон способен принимать сигналы, перерабатывать их в нервные импульсы и проводить к нервным окончаниям, контактирующим с другим нейроном или рефлекторными органами (мышца или железа).

Виды нейронов:

1. Униполярные (имеют один отросток – аксон; характерны для ганглиев беспозвоночных);

2. Псевдоуниполярные (один отросток, делящийся на две ветви; характерно для ганглиев высших позвоночных).

3. Биполярные (есть аксон и дендрит, характерно для периферических и чувствительных нервов);

4. Мультиполярные (аксон и несколько дендритов – характерно для мозга позвоночных);

5. Изополярные (трудно дифференцировать отростки би- и мультиполярных нейронов);

6. Гетерополярные (легко дифференцировать отростки би- и мультиполярных нейронов)

Функциональная классификация:

1.Афферентные (чувствительные, сенсорные – воспринимают сигналы из внешней или внутренней среды);

2.Вставочные связывающие нейроны друг с другом (обеспечивают передачу информации внутри ЦНС: с афферентных нейронов на эфферентные).

3. Эфферентные (двигательные, мотонейроны – передают первые импульсы от нейрона к исполнительным органам).

Главная структурная особенность нейрона – наличие отростков (дендритов и аксонов).

По особенностям строения нервные волокна подразделяют на мякотные, имеющие миелиновую оболочку, и безмякотные, не имеющие миелиновой оболочки.

Центральная часть любого отростка нервной клетки называется осевым цилиндром. Он располагается в аксоплазме и состоит из тончайших волокон- нейрофибрилл, сверху покрыт оболочкой – аксолемой. Мякотные волокна покрыты миелиновой оболочкой. Она располагается вдоль осевого цилиндра не сплошной линией, а сегментами длиной 0,5-2мм. Пространство между сегментами миелина называют перехватами Ранвье - 1-2мк. Миелиновая оболочка выполняет функцию электроизолятора и принимает участие в процессах обмена веществ осевого цилиндра. Изолирующие свойства миелиновой оболочки связаны с тем, что миелин, будучи веществом липоидной природы, обладает очень высоким сопротивлением для электрического тока. Поэтому в мякотных волокнах возбуждение происходит не на всем протяжении мембраны осевого цилиндра, а только в перехватах Ранвье. Наружная мембрана швановских клеток, покрывающая миелин, образует самую верхнюю оболочку нервного волокна - швановскую. Швановские клетки принимают участие в регенерации нервных волокон и дополнительно обеспечивают обмен веществ. Безмякотные волокна отличаются тем, что в них не развивается миелиновая оболочка и их осевые цилиндры покрыты только швановской оболочкой.

Основные свойства нейронов: раздражимость, возбудимость, проводимость, лабильность, инертность, утомляемость, торможение, регенерация и др.

Раздражимость — пусковой механизм проявления другого свойства — возбудимости.

Проведение возбуждения – одно из основных свойств нервных волокон. В мякотных волокнах скорость передачи нервных импульсов от 25 до 100м/с, а в безмякотных она не превышает 3-4 м/с. Такая большая разница связана с тем, что в безмякотных волокнах для распространения нервного импульса необходимо, чтобы под действием местных токов последовательно деполяризовался каждый отдельно взятый участок мембраны осевого цилиндра. А в мякотных волокнах деполяризующий ток не протекает через участки, покрытые миелином, потенциал действия распространяется в них сальтаторно (т.е. “перепрыгивает” с одного перехвата Ранвье на другой.

Законы проведения возбуждения по нервному волокну:

1. Закон физиологической непрерывности – проведение возбуждения по НВ возможно при условии его структурной целостности и физиологической непрерывности. Физиологическая непрерывность нерва м.б. нарушена, например, при сдавлении нерва без его структурного повреждения, что препятствует проведению ПД.

2. Закон изолированного проведения – при проведении возбуждения по НВ ПД не распространяется с одного волокна на другое, например, рядом расположенное.

3. Закон двустороннего проведения – отдельно нервное волокно обладает двусторонней проводимостью. Так, при искусственном электрическом раздражении в любой точке по ходу НВ может возникать ПД и распространяться как центростремительно, так и центробежно.



9. Структура нервно-мышечного синапса. Механизм передачи возбуждения с нерва на мышцу. Потенциал концевой пластинки, его свойства.

Синапс – это структурно функциональное образование, которое обеспечивает передачу возбуждения или торможения с нервного волокна на иннервируемую клетку.

Мионевральный (нервно-мышечный), образованный аксоном мотонейрона и мышечной клеткой;

Синапс состоит из трех основных компонентов:

1. Пресинаптическая мембрана является окончанием отростка нервной клетки. Внутри отростка в непосредственной близости от мембраны имеется скопление пузырьков (гранул), содержащих тот или иной медиатор. Пузырьки находятся в постоянном движении.

2. Постсинаптическая мембрана является частью клеточной мембраны иннервируемой ткани. Постсинаптическая мембрана в отличие от пресинаптической имеет белковые хеморецепторы к биологически активным (медиаторам, гормонам), лекарственным и токсическим веществам. Важная особенность рецепторов постсинаптической мембраны – их химическая специфичность, т.е. способность вступать в биохимическое взаимодействие только с определенным видом медиатора.

3. Синаптическая щель представляет собой пространство между пре- и постсинаптической мембранами, заполненное жидкостью, близкой по составу к плазме крови. Через нее медиатор медленно диффундирует от пресинаптической мембраны к постсинаптической.

Моторный аксон, подходя к мышце, теряет миелиновую оболочку и делится на терминальные веточки, каждая из которых подходит к отдельному мышечному веретену. Нервная клетка вместе с сарколеммой мышечного волокна образует структуру, которую называют нервно-мышечным синапсом. Оголенная часть нерва, обращенная к поверхности мышечного волокна, — это пресинаптическая мембрана; оголенная часть мышечного волокна — это постсинаптическая мембрана; микропространство между этими мембранами — это синаптическая щель. Поверхность мышечного волокна образует множественные контактные складки, на которых расположены N-холинорецепторы.

Потенциал концевой пластинки (ПКП) - этодеполяризация мышечного волокна в участкеконцевой пластинки , которая следует за возбуждениемдвигательного нерва и вызываетсяацетилхолином (АХ), освобождающимся из пресинаптическихнервных окончаний . Синаптические потенциалы, напоминающие ПКП, наблюдаются также внейронах .

ФИЗИОЛОГИЯ ЦНС

1. Общие черты строения ЦНС. Нейрон – морфофункциональная единица ЦНС. Нейроглия, ее взаимоотношение с нейронами.

Центральная нервная система (ЦНС) - основная часть нервной системы животных и человека, состоящая из скопления нервных клеток (нейронов) и их отростков.
1   2   3   4   5   6   7   8   9   ...   23


написать администратору сайта