Главная страница

Тесты по физиологии. Физиология крови и лимфы


Скачать 324.7 Kb.
НазваниеФизиология крови и лимфы
АнкорТесты по физиологии
Дата09.02.2021
Размер324.7 Kb.
Формат файлаdocx
Имя файлаEKZAMEN_FIZA_2021.docx
ТипДокументы
#175017
страница4 из 23
1   2   3   4   5   6   7   8   9   ...   23

Физиология – наука о жизнедеятельности организма, его взаимодействия с окружающей средой и динамикой жизненных процессов.

Ткань- это группа клеток и' межклеточное вещество, объединённые общим строением, функцией и происхождением.

В организме человека присутствуют 4 группы тканей.

1. Эпителиальная - клетки плотно прилегают друг к другу, межклеточного вещества мало. Различают однослойный эпителий, образующий смежные оболочки внутренних органов, многослойный эпителий, образующий покровы тела и железистый эпителий, образующий железы внешней и внутренней секреции.

2. Нервная- состоит из клеток с отростками. Способна возбуждаться и передавать возбуждение.

3. Соединительная - клетки расположены рыхло, сильно развито межклеточное вещество. Различают следующие разновидности соединительной ткани: костная, хрящевая, волокнистая, жировая, кровь.

4. Мышечная - образована мышечными волокнами, способна возбуждаться и сокращаться. Поперечно - полосатая ткань образует опорно - двигательный аппарат тела и некоторых внутренних органов (язык, глотка, начальная часть пищевода). Поперечно - полосатая сердечная, находящаяся в сердце и гладкая мускулатура пищеварительного тракта, мочевого пузыря, кровеносных и лимфатических сосудов и других внутренних органов.

Орган - часть тела, имеющая определённую форму, строение, место расположения и выполняющая одну или несколько функций. Все органы состоят из тканей. К ним относят, например: легкие, сердце, печень, желудок,

Системы органов - это органы, объединённые анатомически, имеющие общий план строения, общее происхождение и выполняющие единые функции.

Например:

· опорно-двигательная система выполняет функцию опоры и движения;

· кровеносная система имеет множество функций, главная из которых -транспорт питательных веществ по организму;

2. Классификация тканей, их функции.

В организме человека выделяют четыре типа тканей:

· Соединительную;

· Нервную;

· Мышечную;

· Эпителиальную.

3. Строение и функции биологических мембран. Ионные каналы. Виды транспорта через мембрану.

Согласно современным представлениям, все клеточные и внутриклеточные мембраны

устроены сходным образом: основу мембраны составляет двойной молекулярный слой

липидов (липидный бислой) на котором и в толще которого находятся белки

Все ионные каналы подразделяются на следующие группы:

По избирательности:

a) Селективные, т.е. специфические. Эти каналы проницаемы для строго определенных ионов.

b) Малоселективные, неспецифические, не имеющие определенной ионной избирательности. Их в мембране небольшое количество.

По характеру пропускаемых ионов:

a) калиевые

b) натриевые

c) кальцевые

d) хлорные

По скорости инактивации, т.е. закрывания:

a) быстроинактивирующиеся, т.е. быстро переходящие в закрытое состояние. Они обеспечивают быстро нарастающее снижение МП и такое же быстрое восстановление.

b) медленноинактирующиеся. Их открывание вызывает медленное снижение МП и медленное его восстановление.

По механизмам открывания:

a) потенциалзависимые, т.е. те которые открываются при определенном уровне потенциала мембраны.

b) хемозависимые, открывающиеся при воздействии на хеморецепторы мембраны клетки физиологически активных веществ (нейромедиаторов, гормонов и т. д).

В настоящее время установлено, что ионные каналы имеют следующее строение:

1.Селективный фильтр, расположенный в устье канала. Он обеспечивает прохождение через канал строго определенных ионов.

2.Активационные ворота, которые открываются при определенном уровне мембранного потенциала или действии соответствующего ФАВ. Активационные ворота потенциалзависимых каналов имеется сенсор, который открывает их на определенном уровне МП.

3.Инактивационные ворота, обеспечивающие закрывание канала и прекращение проведения ионов по каналу на определенном уровне МП.(Рис).

Неспецифические ионные каналы не имеют ворот.

Селективные ионные каналы могут находиться в трех состояниях, которые определяются положением активационных (м) и инактивационных (h) ворот:

1.Закрытом, когда активационные закрыты, а инактивационные открыты.

2.Активированном, и те и другие ворота открыты.

3.Инактивированном, активационные ворота открыты, а инактивационные закрыты

Функции ионных каналов:

1. Калиевый (в покое) – генерация потенциала покоя

2. Натриевый – генерация потенциала действия

3. Кальциевый - генерация медленных действий

4. Калиевый (задержанное выпрямление) – обеспечение реполяризации

5. Калиевый кальций-активируемый – ограничение деполяризации, обусловленной током Са+2

Пассивный транспорт – транспорт веществ через мембрану, осущестляемый без затрат энергии.

1. Простая диффузия. Небольшие нейтральные молекулы (Н2О, СО2, О2, NH3, мочевина, этанол, гидрофобные низкомолекулярные органические вещества (стероидные гормоны, бензол)) диффундируют через мембрану без участия специальных механизмов. Перенос веществ осуществляется по градиенту концентрации и с низкой скоростью (рис. 27, 1).

2. Облегченная диффузия. Для более крупных полярных молекул (глюкоза, аминокислоты), а также для ионов липидный бислой практически непроницаем, так как его внутренняя часть гидрофобна. Такие вещества переносятся через мембрану также по градиенту концентрации, но с участием мембранных белков.

2а. Перенос с участием ионных каналов. Трансмембранный перенос ряда ионов (Са2+, Na+, K+, C1) происходит через ионные каналы - белковые структуры, пронизывающие мембрану. Они образуют трансмембранный гидрофильный (заполненный водой) канал. Избирательность каналов к ионам определяется наличием в белках канала специфического центра связывания иона. Каналы могут быть или закрыты, или открыты. Сигналом для изменения состояния канала являются гормон или иная сигнальная молекула

2б. Перенос с помощью трансмембранных белков-переносчиков (транслоказ). Для каждого вещества или группы сходных веществ имеется свой переносчик. Переносимое вещество присоединяется к транслоказе, в результате чего изменяется ее конформация, в мембране открывается канал, и вещество освобождается с другой стороны мембраны. Поскольку в канале нет гидрофобного препятствия, то этот механизм называют облегченной диффузией (рис. 27, 3). Пример - облегченная диффузия (унипорт) глюкозы в эритроциты с помощью ГЛЮТ-1.

Активный транспорт веществ протекает против концентрационного градиента и требует затрат энергии. Таким способом происходит перенос многих минеральных ионов из межклеточной жидкости в клетку или в обратном направлении, перенос аминокислот из просвета кишечника в клетки кишечника, перенос глюкозы из первичной мочи через клетки канальцев почки в кровь. Основным источником энергии для активного транспорта является АТФ. Поэтому, как правило, эти системы представляют собой АТФазы.

В зависимости от количества веществ, переносимых через один белок-переносчик, и направления транспорта, различают:

унипорт - транспорт одного вещества;

симпорт - транспорт двух веществ в одном направлении через один переносчик;

антипорт - перемещение двух веществ в разных направлениях через один переносчик

Примером активного антипорта яляется натрий–калиевая АТФаза. Она переносит в клетку ионы калия, а из клетки - ионы натрия.

АТФ-аза присоединяет с внутренней стороны мембраны три иона Na+. Эти ионы изменяют конформацию активного центра АТФазы, и она гидролизует одну молекулу АТФ, присоединяя к себе фосфат. Выделившаяся энергия расходуется на изменение конформации АТФазы, после чего три иона натрия оказываются на внешней стороне мембраны, а фосфат замещается на 2 иона K+ из внешней среды. Затем конформация переносчика изменяется на первоначальную, и ионы K+ оказываются на внутренней стороне мембраны. Здесь ионы K+ отщепляются.

Вторично-активный транспорт. Градиент одного вещества используется для транспорта другого. Переносчик в этом случае имеет специфические центры связывания для обоих веществ. Вещество транспортируется противградиента своей концентрации путем симпорта или антипорта. Симпорт и антипорт, например, могут происходить за счет энергии градиента концентрации ионов Na+, создаваемого Na+,K+-ATФазой. Таким способом происходит всасывание аминокислот из кишечника и глюкозы из первичной мочи икишечника.

Пример вторично-активного симпорта – транспорт глюкозы и ионов натрия; вторично-активного антипорта – транспорт ионов кальция и натрия.

ФИЗИОЛОГИЯ ВОЗБУДИМЫХ ТКАНЕЙ

1. Понятие о возбудимости. Параметры возбудимости нервно-мышечной системы: порог раздражения (реобаза), полезное время (хронаксия). Рефрактерность.

Возбудимость -способность ряда тканей (нервной, мышечной, железистой) отвечать на раздражение генерацией процесса возбуждения.

Возбуждение — это сложный физиологический процесс временной деполяризации мембраны клеток, который проявляется специализированной реакцией ткани (проведение нервного импульса, сокращение мышцы, отделение секрета железой и т. д.). Возбудимостью обладают нервная, мышечная и секреторная ткани, которые называют возбудимыми тканями. Возбудимость различных тканей неодинакова. Ее величину оценивают по порогу раздражения — минимальной силе раздражителя, которая способна вызвать возбуждение. Менее сильные раздражители называются подпороговыми, а более сильные — сверхпороговыми.

Раздражителями, вызывающими возбуждение, могут быть любые внешние (действующие из окружающей среды) или внутренние (возникающие в самом организме) воздействия. Все раздражители по их природе можно разделить на три группы: физические (механические, электрические, температурные, звуковые, световые), химические (щелочи, кислоты и другие химические вещества, в том числе и лекарственные) и биологические (вирусы, бактерии, насекомые и другие живые существа).

По степени приспособленности биологических структур к их восприятию раздражители можно разделить на адекватные и не адекватные. Адекватными называются раздражители, к восприятию которых биологическая структура специально приспособлена в процессе эволюции. Например, адекватным раздражителем для фоторецепторов является свет, для барорецепторов — изменение давления, для мышц — нервный импульс. Неадекватными называются такие раздражители, которые действуют на структуру, специально не приспособленную для их восприятия. Например, мышца может сокращаться под влиянием механического, теплового, электрического раздражений, хотя адекватным раздражителем для нее является нервный импульс. Пороговая сила неадекватных раздражителей во много раз превышает пороговую силу адекватных.

Полезное время - минимальное время действия раздражителя силой в одну реобазу за которое возникает возбуждение.

Хронаксия - это минимальное время действия раздражителя силой в две реобазы, необходимое для возникновения возбуждения. Этот параметр

предложил рассчитывать Л. Лапик для более точного определения показателя времени на кривой силы-длительности. Чем короче полезное время или хронаксия тем выше возбудимость и наоборот.

2. Лабильность. Законы раздражения. Исследование электровозбудимости нервов зуба (электроодонтодиагностика).

Лабильность – это скорость развития ответа на раздражитель (отдельных ПД). Чем выше лабильность тем больше ПД может произвести ткань в единицу времени. Мерой лабильности является наибольшее количество импульсов, которое ткань может генерировать в единицу времени.

Законы раздражения

Эти законы отражают определенную зависимость между действием раздражителя и ответной реакцией возбудимой ткани.

Закон силы: чем больше сила раздражителя, тем больше величина ответной реакции. В соответствии с этим законом функционирует скелетная мышца. Амплитуда ее сокращений постепенно увеличивается с увеличением силы раздражителя вплоть до достижения максимальных значений. Это обусловлено тем, что скелетная мышца состоит из множества мышечных волокон, имеющих различную возбудимость. На пороговые раздражители отвечают только волокна, имеющие самую высокую возбудимость, амплитуда мышечного сокращения при этом минимальна. Увеличение силы раздражителя приводит к постепенному вовлечению волокон, имеющих меньшую возбудимость, поэтому амплитуда сокращения мышцы усиливается. Когда в реакции участвуют все мышечные волокна данной мышцы, дальнейшее повышение силы раздражителя не приводит к увеличению амплитуды сокращения.

Закон «все или ничего»: подпороговые раздражители не вызывают ответной реакции («ничего»), на пороговые раздражители возникает максимальная ответная реакция («все»). По закону «все или ничего» сокращаются сердечная мышца и одиночное мышечное волокно. Закон «все или ничего» не абсолютен. Во первых, на раздражители подпороговой силы не возникает видимой ответной реакции, но в ткани происходят изменения мембранного потенциала покоя в виде возникновения местного воз буждения (локального ответа). Во-вторых, сердечная мышца, рас тянутая кровью, реагирует по закону «все или ничего», но ампли туда ее сокращения будет больше по сравнению с таковой при сокращении нерастянутой сердечной мышцы.

Закон раздражения Дюбуа-Реймона (аккомодации): стимулирующее действие постоянного тока зависит не только от абсолютной величины силы тока, но и от скорости нарастания тока во времени.

При действии медленно нарастающего тока возбуждение не возникает, так как происходит приспособление возбуди мой ткани к действию этого раздражителя, что получило название аккомодации. Аккомодация обусловлена тем, что при действии медленно нарастающего раздражителя в мембране происходит повышение критического уровня деполяризации. При снижении скорости нарастания силы раздражителя до некоторого минимального значения ПД не возникает, так как деполяризация мембраны является пусковым стимулом к началу двух процессов: быстрого, ведущего к повышению натриевой проницаемости и тем самым обусловливающего возникновение потенциала действия, и медленного, приводящего к инактивации натриевой проницаемости и как следствие этого — к окончанию потенциала действия. При быстром нарастании стимула повышение натриевой проницаемости успевает достичь значительной величины прежде, чем наступит инактивация натриевой проницаемости. При медленном нарастании тока на первый план выступают процессы инактивации, приводящие к повышению порога гене рации ПД. Способность к аккомодации различных структур неодинакова. Наиболее высокая она у двигательных нервных волокон, а наиболее низкая у сердечной мышцы, гладких мышц кишечника, желудка.

Закон силы-времени: раздражающее действие постоянного тока зависит не только от его величины, но и от времени, в течение которого он действует. Чем больше ток, тем меньше времени он должен действовать на возбудимые ткани, чтобы вызвать возбуждение.

Закон полярного действия постоянного тока: при замыкании тока возбуждение возникает под катодом, а при размыкании — под анодом. Прохождение постоянного электрического тока через нервное или мышечное волокно вызывает изменение мембранного потенциала. Так, в области приложения катода положительный потенциал на наружной стороне мембраны уменьшается, возникает деполяризация, которая быстро достигает критического уровня и вызывает возбуждение. В области же приложения анода положительный потенциал на наружной стороне мембраны возрастает, происходит гиперполяризация мембраны и возбуждение не возникает. Но при этом под анодом критический уровень деполяризации смещается к уровню потенциала покоя. Поэтому при размыкании цепи тока гиперполяризация на мембране исчезает, и потенциал покоя, возвращаясь к исходной вели чине, достигает смещенного критического уровня и возникает возбуждение.

Закон физиологического электротона: действие постоянного тока на ткань сопровождается изменением ее возбудимости. При прохождении постоянного тока через нерв или мышцу порог раздражения под катодом и в соседних с ним участках понижается вследствие деполяризации мембраны (возбудимость повышается). В области приложения анода происходит

повышение порога раздражения, т. е. снижение возбудимости вследствие гипериоляризации мембраны. Эти изменения возбудимости под катодом и анодом получили название электротона (электротоническое изменение возбудимости). Повышение возбудимости под катодам называется катэлектротоном, а снижение возбудимости под анодом — анэлектротоном.

При дальнейшем действии постоянного тока первоначальное повышение возбудимости под катодом сменяется ее понижением, развивается так называемая католическая депрессия. Первоначальное же снижение возбудимости под анодом сменяется ее повышением — анодная экзальтация. При этом в области приложения катода — инактивация натриевых каналов, а в обла сти действия анода происходит снижение калиевой проницаемости и ослабление исходной инактивации натриевой проницаемости.
1   2   3   4   5   6   7   8   9   ...   23


написать администратору сайта