Главная страница
Навигация по странице:

  • Физиологические основы голода и насыщения

  • Лекарственные средства, применяемые при нарушении секреторной функции пищеварительного тракта

  • Для всасывания микромолекул – продуктов гидролиза пита-тельных веществ, электролитов, лекарственных препаратов используются несколько видов транспортных механизмов.

  • Различают четыре системы переноса аминокислот

  • Всасывание воды и электролитов

  • Всасывание лекарственных препаратов

  • Пищеварительная функция печени

  • Функции желчи

  • Регуляция желчеотделения и желчевыделения

  • Непищеварительные функции печени

  • Участие в белковом обмене

  • Участие в жировом обмене

  • Печень – депо витаминов

  • Участие в свертывании крови

  • Дезинтоксикационная функция печени

  • Биотрансформация лекарственных препаратов в печени

  • Все лекарственные вещества делятся на две группы

  • Гепатотропные средства

  • Шпора норфиз. Агаджанян Николай. Нормальная физиология - royallib.com. Физиология возбудимых тканей


    Скачать 5.37 Mb.
    НазваниеФизиология возбудимых тканей
    АнкорШпора норфиз
    Дата22.10.2019
    Размер5.37 Mb.
    Формат файлаrtf
    Имя файлаАгаджанян Николай. Нормальная физиология - royallib.com.rtf
    ТипДокументы
    #91375
    страница26 из 40
    1   ...   22   23   24   25   26   27   28   29   ...   40

    Методы изучения функций пищеварительного тракта



    Изучение секреторной и моторной деятельности желудочно-кишечного тракта проводится как на человеке, так и в эксперименте на животных. Особую роль играют хронические исследования, когда животному предварительно производится соответствующая операция и после восстановительного периода изучаются функции желудочно-кишечного тракта. В основе этих операций лежит принцип максимального сохранения нервных и сосудистых связей, обеспечивающих выполнение функций того или иного органа.

    Для изучения секреторной активности применяют выведение на кожу выводных протоков желез, или фистульный метод. Фистула – это искусственно созданное сообщение между полостью органа и внешней средой. Фистульные методы исследования дают возможность получать чистые пищеварительные соки с последующим изучением их состава и переваривающих свойств натощак, после кормления или другой стимуляции секреции; изучать моторную, секреторную и всасывательную функции органов пищеварения; изучать механизмы регуляции деятельности пищеварительных желез. В. А. Басовым (1842 г.) была впервые проведена операция наложения фистулы желудка. Однако с помощью этого метода нельзя было получить чистый желудочный сок.

    И. П. Павловым и Е. О. Шумовой-Симаковской (1889 г.) был разработан метод «мнимого кормления», когда животному с фистулой желудка одновременно делалась эзофаготомия (перерезка пищевода). Когда собака ела, пища выпадала из отверстия пищевода, а в желудке выделялся чистый желудочный сок, который собирался из фистулы. Этот метод дает возможность изучать рефлекторную деятельность желез желудка при раздражении рецепторов полости рта. Однако он не позволяет исследовать влияние самой пищи и продуктов расщепления, находящихся в желудке, на секрецию желудочных желез.

    Р. Гейденгайном была разработана операция изолированного желудочка, которая давала возможность получить чистый желудочный сок. Но эта операция не учитывала топографию нервов, иннервирующих желудок. При формировании изолированного желудочка нервы перерезались, а желудочек оказывался денервированным. Этим методом можно было изучать только гуморальную фазу желудочной секреции. И. П. Павлов, учтя недостатки методики Р. Гейденгайна, предложил способ операции изолированного желудочка без перерезки нервов, иннервирующих желудок, что дало возможность изучать желудочную секрецию на протяжении всего периода пищеварения.

    Для изучения секреторной активности других желез производятся операции наложения фистулы слюнных желез, поджелудочной железы, кишечника. Секреторную и моторную активность кишечника можно исследовать с помощью изолированных отрезков кишки, один или оба конца которых выводят наружу.

    Для изучения секреторной и моторной функций желудокно-кишечного тракта у человека используются зондовые и беззондовые методы. Зондовые методы (зондирование желудка, 12-перстной кишки) позволяют определить объем и состав секрета как натощак, так и после стимуляции пищеварительных желез пищей и различными фармакологическими препаратами (гистамином, пентагастрином при оценке желудочной секреции и серно-кислой магнезией при исследовании желчевыведения). В последние годы широко используются эндоскопические методы исследования желудка и кишечника, которые позволяют наряду с визуальным наблюдением за слизистой оболочкой получать биопсийный материал.

    При беззондовых методах учитывают содержание в крови и выделение с мочой веществ, освободившихся из принятых препаратов под действием на них пищеварительных секретов. О функциональном состоянии пищеварительных желез также можно судить по активности их ферментов в крови и моче. Разработан также метод эндорадиозондирования. Радиокапсула, проглоченная внутрь, может передавать информацию в виде радиосигналов о параметрах содержимого различных отделов желудочно-кишечного тракта, например рН и др. Радиокапсула с датчиком давления используется для изучения моторной активности пищеварительного тракта.

    Для изучения моторной функции пищеварительного аппарата применяются также методы мастикациографии (графическая регистрация жевательных движений нижней челюсти) и электрогастрографии (регистрация с поверхности передней брюшной стенки биотоков желудка, возникающих при его сокращении). В клинике также широко используются методы рентгенологического исследования с помощью рентгеноконтрастных веществ, радиоизотопное сканирование, УЗИ печени и желчного пузыря. Оценка гидролиза и всасывания в клинической практике производится биохимическими методами определения веществ при даче исходных продуктов.

    Физиологические основы голода и насыщения



    Потребность в питательных веществах выражается в состоянии голода и создает мотивацию поиска и поедания пищи. Совокупность нейронов различных отделов центральной нервной системы, которые определяют пищевое поведение и регулируют пищеварительные функции человека и животного, составляют пищевой центр. Эти нейроны находятся в коре больших полушарий, в лимбической системе, ретикулярной формации, гипоталамусе, где локализуется центр голода. При возбуждении этих ядер у животного развивается гиперфагия – усиленное потребление пищи. Разрушение этих ядер приводит животное к отказу от пищи – афагии. В вентромедиальных ядрах гипоталамуса находится центр насыщения. При стимуляции этих нейронов у животного возникает афагия, при их разрушении – гиперфагия. Между центром голода и центром насыщения существуют реципрокные отношения, т. е. если один центр возбужден, то другой заторможен. Возбуждение или торможение этих ядер происходит в зависимости от содержания питательных веществ в крови, а также сигналов, поступающих от различных рецепторов. Существует несколько теорий, объясняющих возникновение чувства голода.
    Глюкостатическая теория – ощущение голода связано со снижением уровня глюкозы в крови.

    Аминоацидостатическая – чувство голода создается понижением содержания в крови аминокислот.

    Липостатическая – нейроны пищевого центра возбуждаются недостатком жирных кислот и триглицеридов в крови.

    Метаболическая – раздражителем нейронов пищевого центра являются продукты метаболизма цикла Кребса.

    Термостатическая – снижение температуры крови вызывает чувство голода.

    Локальная теория – чувство голода возникает в результате импульсации от механорецепторов желудка при его «голодных» сокращениях.
    Насыщение возникает в результате возбуждения нейронов центра насыщения. Выделяют первичное, или сенсорное, насыщение и вторичное, или обменное. Сенсорное насыщение связано с торможением латеральных ядер гипоталамуса импульсами от ре-цепторов рта, желудка, возбуждаемых принимаемой пищей. В то же время возбуждение нейронов вентромедиальных ядер гипоталамуса приводит к поступлению в кровь питательных веществ из депо. Вторичное, обменное, или истинное, насыщение наступает через 1,5 – 2 часа с момента приема пищи, когда в кровь поступают продукты гидролиза питательных веществ. Гормоны желудочно-кишечного тракта также играют важную роль в возникновении чувства голода и насыщения. Холецистокинин, соматостатин, бомбезин и другие снижают потребление пищи. Пентагастрин, окситоцин и другие способствуют формированию чувства голода.

    Лекарственные средства, применяемые при нарушении секреторной функции пищеварительного тракта



    Широкое применение в клинике нашли лекарственные средства, тормозящие кислотно-пепсиновую секрецию желудочных желез. Эти препараты используются при язвенных поражениях желудка и двенадцатиперстной кишки. В качестве антисекреторных препаратов применяют блокаторы Н2-гистаминовых рецепторов (циметидин) и М-холинолитики (атропин и его аналоги и избирательный блокатор М^холинорецепторов гастроцепин). При назначении неизбирательных М-холинолитиков за счет уменьшения секреции слюнных желез может наблюдаться сухость во рту. Снизить секрецию соляной кислоты можно также, ингибируя активность Na+, К+–АТФазы в мембранах париетальных клеток. Таким действием обладает препарат омепразол. Для нейтрализации соляной кислоты при гиперацидных гастритах применяют антацидные вещества, повышающие рН. В качестве антацидов используют различные сочетания гидроокиси алюминия и магния, например, в составе препарата альмагеля. Эти вещества обладают также адсорбирующими и обволакивающими свойствами.

    При различных нарушениях процессов пищеварения, связанных с недостаточной секреторной способностью желудка, кишечника, поджелудочной железы, расстройствах пищеварения вследствие нарушения диеты, применяют ферментные препараты. Эти лекарственные средства, как правило, являются комплексными препаратами, содержащими определенный набор различных ферментов. При недостаточной функции желудочных желез используют натуральный желудочный сок, получаемый от здоровых собак через фистулу желудка при мнимом кормлении, или препараты, содержащие протеолитические ферменты. Так, из слизистой оболочки желудка свиней получают основной протеолитический фермент пепсин. Имеются лекарственные средства, содержащие сумму протеолитических ферментов желудочного сока (абомин). Эти ферментные средства применяют обычно в сочетании с разведенной соляной (хлористоводородной) кислотой. Получены фармакологические препараты, содержащие амилолитические, протеолитические и липолитические ферменты. Так, например, ферментный препарат из поджелудочных желез убойного скота панкреатин содержит трипсин и амилазу. Комплексный препарат фестал содержит основные компоненты поджелудочной железы (амилазу, липазу, протеазу) и желчи. Препарат панзинорм форте содержит экстракт слизистой оболочки желудка (пепсин, катепсин), экстракт желчи, аминокислоты, трипсин, химотрипсин, амилазу, липазу.

    В качестве диагностического средства для определения секреторной способности и кислотообразующей функции желудка используют синтетический аналог гастрина – пентагастрин.
    Лекарственные средства, применяемые при нарушениях моторной функции пищеварительного тракта

    Учитывая, что ацетилхолин, выделяющийся в окончаниях холинергических нервов, иннервирующих органы пищеварения, вызывает повышение тонуса и перистальтики гладких мышц пищеварительного тракта, при атониях желудка и кишечника применяются фармакологические препараты, возбуждающие холинорецепторы и действующие как эндогенный ацетилхолин (холиномиметики, например, ацеклидин). Аналогичным действием обладают и вещества, инактивирующие фермент холинэстеразу, разрушающую ацетилхолин, что приводит к накоплению эндогенного ацетилхолина (антихолинэстеразные вещества, например прозерин).

    При заболеваниях желудочно-кишечного тракта, сопровождающихся спазмом гладких мышц (спастические колиты, пилороспазм, холециститы), применяются лекарственные вещества, напротив, понижающие тонус гладких мышц. Таким действием обладают спазмолитические средства (но-шпа) и холинолитические препараты (атропин, метацин).

    Всасывание



    Всасывание – это процесс транспорта переваренных пищевых веществ из полости желудочно-кишечного тракта в кровь, лимфу и межклеточное пространство

    Оно осуществляется на протяжении всего пищеварительного тракта, но в каждом отделе имеются свои особенности.

    В полости рта всасывание незначительное, так как пища там не задерживается, но некоторые вещества, например, цианистый калий, а также лекарственные препараты (эфирные масла, валидол, нитроглицерин и др.) всасываются в ротовой полости и очень быстро попадают в кровеносную систему, минуя кишечник и печень. Это находит применение как способ введения лекарственных веществ.

    В желудке всасываются некоторые аминокислоты, немного глюкозы, воды с растворенными в ней минеральными солями и довольно существенно всасывание алкоголя.

    Основное всасывание продуктов гидролиза белков, жиров и углеводов происходит в тонком кишечнике. Белки всасываются в виде аминокислот, углеводы – в виде моносахаридов, жиры – в виде глицерина и жирных кислот. Всасыванию нерастворимых в воде жирных кислот помогают водорастворимые соли желчных кислот.

    Всасывание питательных веществ в толстой кишке незначительно, там всасывается много воды, что необходимо для формирования кала, в небольшом количестве глюкоза, аминокислоты, хлориды, минеральные соли, жирные кислоты и жирорастворимые витамины A, D, Е, К. Вещества из прямой кишки всасываются так же, как и из ротовой полости, т. е. непосредственно в кровь, минуя портальную кровеносную систему. На этом основано действие так называемых питательных клизм.

    Что касается других отделов желудочно-кишечного тракта (желудка, тонкого и толстого кишечника), то всосавшиеся в них вещества вначале поступают по портальным венам в печень, а затем в общий кровоток. Лимфоотток от кишечника осуществляется по кишечным лимфатическим сосудам в млечную цистерну. Наличие клапанов в лимфатических сосудах препятствует возврату лимфы в сосуды, которая по грудному протоку поступает в верхнюю полую вену.

    Всасывание зависит от величины всасывательной поверхности. Особенно она велика в тонкой кишке и создается за счет складок, ворсинок и микроворсинок. Так, на 1 мм2 слизистой оболочки кишки приходится 30 – 40 ворсинок, а на каждый энтероцит – 1700 – 4000 микроворсинок. Каждая ворсинка – это микроорган, содержащий мышечные сократительные элементы, кровеносный и лимфатический микрососуды и нервное окончание. Микроворсинки покрыты слоем гликокаликса, состоящего из мукополисахаридных нитей, связанных между собой кальциевыми мостиками, и образующего слой толщиной 0,1 мкм. Это молекулярное сито или сеть, которая благодаря отрицательному заряду и гидрофильности пропускает к мембране микроворсинок низкомолекулярные вещества и препятствует переходу через нее высокомолекулярных веществ и ксенобиотиков. Гликокаликс вместе с покрывающей кишечный эпителий слизью адсорбирует из полости кишки гидролитические ферменты, необходимые для полостного гидролиза питательных веществ, которые затем транспортируются на мембрану микроворсинок.

    Большую роль во всасывании играют сокращения ворсинок, которые натощак сокращаются слабо, а при наличии в кишке химуса – до б сокращений в 1 минуту. В регуляции сокращения ворсинок принимает участие интрамуральная нервная система (подслизистое, мейснеровское сплетение).

    Экстрактивные вещества пищи, глюкоза, пептиды, некоторые аминокислоты усиливают сокращения ворсинок. Кислое содержимое желудка способствует образованию в тонкой кишке специального гормона – вилликинина, стимулирующего через кровоток сокращения ворсинок.

    Механизмы всасывания



    Для всасывания микромолекул – продуктов гидролиза пита-тельных веществ, электролитов, лекарственных препаратов используются несколько видов транспортных механизмов.

    1. Пассивный транспорт, включающий в себя диффузию, фильтрацию и осмос.

    2. Облегченная диффузия.

    3. Активный транспорт
    Диффузия основана на градиенте концентрации веществ в полости кишечника, в крови или лимфе. Путем диффузии через слизистую оболочку кишечника переносятся вода, аскорбиновая кислота, пиридоксин, рибофлавин и многие лекарственные препараты.

    Фильтрация основана на градиенте гидростатического давления. Так, повышение внутрикишечного давления до 8–10 мм рт.ст. увеличивает в 2 раза скорость всасывания из тонкой кишки раствора поваренной соли. Способствует всасыванию увеличение моторики кишечника.

    Переходу веществ через полупроницаемую мембрану энтероцитов помогают осмотические силы. Если в желудочно-кишечный тракт ввести гипертонический раствор какой-либо соли (поваренной, английской и т. д.), то по законам осмоса жидкость из крови и окружающих тканей, т. е. из изотонической среды, будет всасываться в сторону гипертонического раствора, т. е. в кишечник, и оказывать очищающее действие. На этом основано действие солевых слабительных. По осмотическому градиенту всасываются вода, электролиты.

    Облегченная диффузия осуществляется также по градиенту концентрации веществ, но с помощью особых мембранных переносчиков, без затраты энергии и быстрее, чем простая диффузия. Так, с помощью облегченной диффузии переносится фруктоза.

    Активный транспорт осуществляется против электрохимического градиента даже при низкой концентрации этого вещества в просвете кишечника, при участии переносчика и требует затраты энергии. В качестве переносчика – транспортера чаще всего используется Na+, с помощью которого всасываются такие вещества, как глюкоза, галактоза, свободные аминокислоты, соли желчных кислот, билирубин, некоторые дии трипептиды.

    Путем активного транспорта всасываются также витамин В12, ионы кальция. Активный транспорт крайне специфичен и может угнетаться веществами, имеющими химическое сходство с субстратом.

    Тормозится активный транспорт при низкой температуре и недостатке кислорода. На процесс всасывания влияет рН среды. Оптимальная рН для всасывания – нейтральная.

    Многие вещества могут всасываться при участии как активного, так и пассивного транспорта. Все зависит от концентрации вещества. При низкой концентрации преобладает активный транспорт, а при высокой – пассивный.

    Некоторые высокомолекулярные вещества транспортируются путем эндоцитоза (пиноцитоза и фагоцитоза). Этот механизм заключается в том, что мембрана энтероцита окружает всасываемое вещество с образованием пузырька, который погружается в цитоплазму, а затем переходит к базальной поверхности клетки, где заключенное в пузырек вещество выбрасывается из энтероцита. Этот вид транспорта имеет значение при переносе у новорожденного белков, иммуноглобулинов, витаминов, ферментов грудного молока.

    Некоторые вещества, например, вода, электролиты, антитела, аллергены могут проходить через межклеточные пространства. Такой вид транспорта называется персорбцией.

    Всасывание белков



    Белки под действием пептидаз – ферментов желудочного, кишечного и панкреатического соков расщепляются до олигопептидов, а затем аминокислот и всасываются в кровь. В двенадцати-перстной кишке всасывается 50 – 60% белков пищи и 30% – по мере прохождения химуса до подвздошной кишки, т. е. основная масса белков всасывается в тонком кишечнике (80 – 90%) и только 10% – в толстом под действием бактерий. У новорожденных цельные белки матери (глобулины) поступают из кишечника прямо в кровь ребенка, где они и были обнаружены. Предполагается, что именно это обстоятельство обеспечивает иммунитет ребенка сразу после рождения.

    Аминокислоты всасываются с различной скоростью: быстрее всего всасываются аргинин, метионин, лецитин, медленнее – цистеин, фенилаланин, тирозин, а еще медленнее – аланин, серин, глютаминовая кислота. Некоторые иммуноглобулины всасываются путем пиноцитоза. Основной вид всасывания белка – с помощью активного транспорта, т. е. с тратой энергии фосфоросодержащих макроэргов и с участием переносчиков.
    Различают четыре системы переноса аминокислот:

    1. система переноса нейтральных аминокислот (валина, фенилаланина, аланина)

    2. система переноса основных аминокислот (аргинина, цистеина, лизина, орнитина

    3. система переноса иминокислот (пролина)

    4. система переноса бикарбоновых аминокислот (глутамйновой и аспарагина).
    К дополнительной группе относится система для глицина. Натрий также принимает участие во всасывании белка.

    Различные аминокислоты одной группы ингибируют перенос друг друга, конкурируя за один и тот же переносчик (конкурентное ингибирование).

    Аминокислоты могут освобождаться из энтероцита также с помощью диффузии и облегченной диффузии, но эти два вида транспорта не являются для них основными.

    Возраст влияет на всасывание белка. Оно более интенсивно в молодом возрасте.

    Уровень белкового обмена, содержание аминокислот в крови, нервные и гуморальные факторы влияют на всасывание белков.

    Всасывание углеводов



    Углеводы всасываются в кишечнике только в виде моносахаридов. Наиболее интенсивно всасываются глюкоза и галактоза (гексозы), пентозы всасываются медленнее.

    Если употребляется пища, богатая углеводами, то их концентрация в просвете кишечника увеличивается и они всасываются путем пассивного транспорта. Но основной путь всасывания глюкозы и галактозы – активный транспорт, сопряженный с переносом натрия. Без натрия эти моносахариды всасываются в 100 раз медленнее, а против градиента концентрации транспорт глюкозы полностью прекращается.

    Процесс всасывания глюкозы происходит следующим образом. Аккумулируясь на наружной стороне мембраны энтероцита, обращенной в полость кишечника, глюкоза в присутствии натрия связывается с переносчиком, который по электрохимическому градиенту для натрия диффундирует к внутренней стороне мембраны. В цитоплазме он высвобождает натрий и глюкозу. Затем переносчик и натрий транспортируются снова к наружной стороне мембраны энтероцита, а накопившаяся в цитозоле глюкоза удаляется из клетки в сосуд по градиенту концентрации. Концентрация натрия поддерживается за счет работы энергозависимого натрий-калиевого насоса.

    Всасывание углеводов регулируется нейрогуморальными факторами. Парасимпатическая нервная система стимулирует, а симпатическая – тормозит всасывание углеводов.

    Спинной мозг, ствол мозга, подкорковые структуры и кора больших полушарий также могут влиять на всасывание углеводов.

    Гормоны коры надпочечников, гипофиза, щитовидной железы, серотонин, ацетилхолин усиливают всасывание, а гистамин и особенно соматостатин – замедляют.

    Всасывание жиров



    Жиры после их гидролиза под действием липазы на глицерин и жирные кислоты всасываются наиболее активно в двенадцатиперстной кишке и проксимальном отделе тощей кишки. Жирные кислоты плохо растворимы в воде, но их делают водорастворимыми соли желчных кислот.

    На поверхности мембраны энтероцита образуется мицелла, в состав которой входят жирная кислота с длинными цепями, желчная кислота и глицерин. Затем мицелла проходит в мембрану энтероцита без траты энергии. Внутри мембраны жирные кислоты захватываются специальным транспортным белком. В цитозоле энтероцита глицерин и жирные кислоты снова превращаются в триглицериды, холестерин и фосфолипиды. Все три образовавшиеся вещества, заключенные в тонкую липопротеиновую оболочку, формируют мельчайшие жировые частицы диаметром 60–75 нм, которые называются хиломикронами. Последние, пройдя через базолатеральную мембрану клетки, попадают в межклеточное пространство, а затем в лимфатические сосуды.

    Помимо хиломикронов в энтероцитах образуются липопротеины очень низкой плотности, которые также попадают в лимфатические сосуды. Так как жиры в основном всасываются в лимфу, то через несколько часов после приема пищи от всасывания жира лимфа приобретает белый цвет, напоминая молоко (млечный сок).

    Всасывание липидов регулируется центральной нервной системой. Парасимпатическая нервная система усиливает, а симпатическая нервная система тормозит всасывание липидов. Стимулируют всасывание гормоны коры надпочечников, гипофиза и щитовидной железы, а также гормоны APUD-системы – секретин и ХЦК-ПЗ.

    Всасывание витаминов



    Водорастворимые витамины всасываются в дистальном отделе тощей кишки и проксимальном отделе подвздошной кишки.

    Всасывание жирорастворимых витаминов A, D, Е, К происходит в средней части тощей кишки и целиком зависит от всасывания жиров, нарушение которого препятствует транспорту витаминов из кишечника в лимфу и кровь. Витамин А образует эфиры с жирными кислотами и поступает в лимфу в составе хиломикронов. Для всасывания жирорастворимых витаминов важно наличие желчных кислот.

    Витамин С и рибофлавин переносятся путем диффузии. Витамин В12 в комплексе с внутренним фактором Касла всасывается в подвздошной кишке.

    Всасывание воды и электролитов



    В пищеварительный тракт за сутки с пищей и питьем поступает 2,0 – 2,5 л воды, остальные 6–7 л воды выделяются в составе слюны, желудочного, панкреатического и кишечного соков. Таким образом, в полость желудочно-кишечного тракта за сутки поступает до 9,5 л воды. Незначительная часть воды всасывается в желудке, а большая часть – в тонком и особенно в толстом кишечнике.

    Вода всасывается в основном пассивно за счет осмотического градиента, создаваемого активным транспортом натрия между просветом кишечника и межклеточным пространством. Все факторы, влияющие на транспорт Na+, изменяют и всасывание воды. Так, блокатор натриевого насоса оубаин подавляет всасывание воды.

    В результате поступления Na+ из полости кишечника в межклеточную жидкость последняя становится гипертонической и притягивает к себе воду из просвета кишечника. Ток воды создает в межклеточном пространстве градиент гидростатического давления, являющийся движущей силой передвижения воды и растворенных в ней веществ в сторону капилляров, базальная мембрана которых обладает большой проницаемостью. Кроме того, вода всасывается через межэпителиальные щели путем персорбции.

    Всасывание воды связано также с транспортом аминокислот и Сахаров, поэтому если подавить всасывание Сахаров флорицином, то замедляется и всасывание воды. Оптимальный рН для всасывания воды – 6,8. Наркоз (эфир, хлороформ) и ваготомия тормозят всасывание воды, которое зависит также от степени гидратации тканей. Об участии коры больших полушарий в механизмах всасывания воды свидетельствует условно-рефлекторное изменение ее всасывания. АКТГ усиливает всасывание воды и хлоридов, тироксин стимулирует всасывание воды. Некоторые гастроинтестинальные гормоны (гастрин, секретин, ХЦК-ПЗ, ВИП, бомбезин, серотонин) тормозят всасывание воды.

    Всасывание натрия осуществляется различными путями: пассивно по градиенту концентрации, активно за счет работы натриевых и натрий-калиевых насосов, а также путем персорбции через межклеточные щели. За одни сутки в желудочно-кишечном тракте всасывается более 1 моля натрия хлорида. Основное всасывание Na+ происходит в подвздошной и толстой кишке. От всасывания Na+ зависит транспорт аминокислот, глюкозы и других веществ.

    Всасывание Na+ регулируется минералокортикоидами и гормонами задней доли гипофиза, которые усиливают всасывание натрия. Угнетают этот процесс гастрин, секретин, ХЦК-ПЗ. Всасывание К+ осуществляется в тонком и толстом кишечнике за счет активного и пассивного транспорта по электрохимическому градиенту. Транспорт калия сопряжен с транспортом натрия.

    Хлориды всасываются в желудке и подвздошной кишке по типу активного и пассивного транспорта. Всасывание хлора связано с транспортом Na+, Са2+ и К+. Всасывание кальция происходит очень медленно с помощью специального переносчика – кальцийсвязывающего белка, синтез которого контролируется витамином D3. Последний образуется в коже под влиянием ультрафиолетового облучения. Этот процесс активируется желчными кислотами, некоторыми аминокислотами, натрием, антибиотиками. Паратгормон, гормоны щитовидной железы, гипофиза и надпочечников увеличивают всасывание кальция. Железо всасывается в тонком кишечнике путем активного транспорта. В энтероцитах содержится специальный переносчик железа, который транспортирует его внутрь клетки. Там он связывается со специфическим белком, который доставляет двухвалентное железо в кровь. В крови есть белок трансферритин, связывающий и доставляющий железо к месту его действия. Избыток железа вместе с ферритином поступает в просвет кишечника и выводится.

    Всасывание лекарственных препаратов



    Механизмы всасывания лекарственных препаратов из полости желудочно-кишечного тракта различны: прежде всего это диффузия, этим способом всасывается большинство лекарственных препаратов, затем фильтрация и пиноцитоз. Некоторые лекарственные препараты всасываются путем активного транспорта. На процесс всасывания лекарств в желудке и кишечнике влияет целый ряд факторов. В первую очередь – это рН среды. Поэтому в желудке, где среда кислая, лучше всего всасываются лекарствакислоты, а лекарства-основания – в кишечнике. Кислая среда разрушает некоторые лекарства, например бензилпенициллин. Другим субстратом, действующим на всасывание лекарств, являются ферменты желудочно-кишечного тракта, которые способны инактивировать ряд белковых и полипептидных веществ (кортикотропины, вазопрессин, инсулин и др.), а также некоторые гормоны (прогестерон, тестостерон, альдостерон). Соли желчных кислот, в свою очередь, могут ускорять всасывание лекарств или, наоборот, замедлять его при образовании нерастворимых соединений.

    Моторика желудочно-кишечного тракта – один из факторов, лимитирующих скорость и полноту всасывания лекарственных препаратов.

    Количество пищи, ее состав, интервал времени между едой и приемом лекарств влияют на всасывание лекарств. Так, всасывание тетрациклинов, ампициллина нарушается под действием молока, солей железа, при высоком содержании углеводов, белков и жира в пище.

    Объем жидкости, принимаемой вместе с лекарствами, может вызвать или замедление, или ускорение всасывания.


    Печень



    Печень – это железа внешней секреции, выделяющая свой секрет в двенадцатиперстную кишку. Свое название она получила от слова «печь», так как в печени самая высокая температура по сравнению с другими органами. Печень представляет собой сложнейшую «химическую лабораторию», в которой происходят процессы, связанные с образованием тепла. Печень принимает самое активное участие в пищеварении. Кроме пищеварительной печень выполняет целый ряд других важнейших функций, которые будут рассмотрены ниже. Через нее проходят почти все вещества, в том числе и лекарственные, которые так же, как и токсические продукты, обезвреживаются

    Пищеварительная функция печени



    Эту функцию можно разделить на секреторную, или желче-отделение (холерез) и экскреторную, или желчевыделение (холекинез). Желчеотделение происходит непрерывно и желчь накапливается в желчном пузыре, а желчевыделение – только во время пищеварения (через 3–12 мин после начала приема пищи). При этом желчь сначала выделяется из желчного пузыря, а затем из печени в двенадцатиперстную кишку. Поэтому принято говорить о печеночной и пузырной желчи.

    За сутки отделяется 500 – 1500 мл желчи. Она образуется в печеночных клетках – гепатоцитах, которые контактируют с кровеносными капиллярами. Из плазмы крови с помощью пассивного и активного транспорта в гепатоцит выходит ряд веществ: вода, глюкоза, креатинин, электролиты и др. В гепатоците образуются желчные кислоты и желчные пигменты, затем все вещества из гепатоцита секретируют в желчные капилляры. Далее желчь поступает в желчные печеночные протоки. Последние впадают в общий желчный проток, от которого отходит пузырный проток. Из общего желчного протока желчь попадает в двенадцатиперстную кишку.
    Состав желчи


    Печеночная желчь имеет золотисто-желтый цвет, пузырная – темно-коричневый; рН печеночной желчи – 7,3 – 8,0, относительная плотность – 1,008–1,015; рН пузырной желчи – 6,0 – 7,0 за счет всасывания гидрокарбонатов, а относительная плотность – 1,026–1,048.

    Желчь состоит из 98% воды и 2% сухого остатка, куда входят органические вещества: соли желчных кислот, желчные пигменты – билирубин и биливердин, холестерин, жирные кислоты, лецитин, муцин, мочевина, мочевая кислота, витамины А, В, С; незначительное количество ферментов: амилаза, фосфатаза, протеаза, каталаза, оксидаза, а также аминокислоты и глюкокортикоиды; неорганические вещества: Na+, К+, Са2+, Fe++, Сl-, HCО3-, SО4-, НРО42-. В желчном пузыре концентрация всех этих веществ в 5–6 раз больше, чем в печеночной желчи.

    Холестерин – 80% его образуется в печени, 10% – в тонком кишечнике, остальное – в коже. За сутки синтезируется около 1 г холестерина. Он принимает участие в образовании мицелл и хиломикронов и только 30% всасывается из кишечника в кровь. Если нарушается выведение холестерина (при заболевании печени или неправильной диете), то возникает гиперхолестеринемия, которая проявляется или в виде атеросклероза, или желчнокаменной болезни.

    Желчные кислоты синтезируются из холестерина. Взаимодействуя с аминокислотами глицином и таурином, образуют соли гликохолевой (80%) и таурохолевой кислот (20%). Они способствуют эмульгированию и лучшему всасыванию в кровь жирных кислот и жирорастворимых витаминов (A, D, Е, К). За счет гидрофильности и липофильности жирные кислоты способны образовывать мицеллы с жирными кислотами и эмульгировать последние.

    Желчные пигменты – билирубин и биливердин придают желчи специфическую желто-коричневую окраску. В печени, селезенке и костном мозге происходит разрушение эритроцитов и гемоглобина. Вначале из распавшегося гема образуется биливердин, а затем билирубин. Далее вместе с белком в нерастворенной в воде форме билирубин с кровью транспортируется в печень. Там, соединившись с глюкуроновой и серной кислотами, он образует водорастворимые конъюгаты, которые выделяются печеночными клетками в желчный проток и в двенадцатиперстную кишку, где от конъюгата под действием микрофлоры кишечника отщепляется глюкуроновая кислота и образуется стеркобилин, придающий калу соответствующую окраску, а после всасывания из кишечника в кровь, а затем в мочу – уробилин, окрашивающий мочу в желтый цвет. При поражении клеток печени, например, при инфекционном гепатите или закупорке желчных протоков камнями или опухолью, в крови накапливаются желчные пигменты, появляется желтая ркраска склер и кожи. В норме содержание билирубина в крови составляет 0,2–1,2 мг%, или 3,5- 19 мкмоль/л (если больше 2–3 мг%, возникает желтуха).

    Функции желчи


    Желчь выполняет целый ряд важных функций.

    1. Эмульгирует жиры, делая водорастворимыми жирные кислоты.

    2. Способствует всасыванию триглицеридов и образованию мицелл и хиломикронов.

    3. Активирует липазу.

    4. Стимулирует моторику тонкого кишечника.

    5. Инактивирует пепсин в двенадцатиперстной кишке.

    6. Оказывает бактерицидное и бактериостатическое действие на кишечную флору.

    7. Стимулирует пролиферацию и слущивание энтероцитов.

    8. Усиливает гидролиз и всасывание белков и углеводов.

    9. Стимулирует желчеобразование и желчевыделение.

    Регуляция желчеотделения и желчевыделения


    Желчеотделение и желчевыделение усиливаются при стимуляции парасимпатических волокон и снижаются – при раздражении симпатических. Стимуляция парасимпатических нервных волокон вызывает сокращение тела желчного пузыря и расслабление сфинктера, в результате желчь выделяется в двенадцатиперстную кишку. Раздражение симпатических нервов сокращает сфинктер и расслабляет тело желчного пузыря – желчный пузырь не опорожняется. Рефлекторные изменения желчеобразования и желчевыделения наблюдаются при раздражении интерорецепторов пищеварительного тракта, а также при условно-рефлекторных воздействиях.

    К гуморальным желчегонным факторам относится сама желчь. Поэтому в состав таких хорошо известных препаратов, как аллохол, холензим, входит желчь. Усиливают секрецию желчи гастрин, ХЦК-ПЗ, секретин, простагландины. Некоторые пищевые продукты, такие как желтки, молоко, жирная пища, хлеб, мясо, стимулируют желчеобразование и желчевыделение.

    Вид, запах пищи, разговоры о пище, подготовка к ее приему вызывают соответствующие изменения в деятельности желчного пузыря и всего желчевыделительного аппарата. В первые 7 – 10 минут желчный пузырь сначала расслабляется, а затем сокращается и небольшая порция желчи через сфинктер Одди выходит в двенадцатиперстную кишку. После этого следует основной период опорожнения желчного пузыря. В результате его периодических сокращений, чередующихся с расслаблением, в двенадцатиперстную кишку выходит желчь вначале из общего желчного протока, затем пузырная и в последнюю очередь – печеночная.

    Желчевыделение стимулируется ХЦК-ПЗ, гастрином, секретином, бомбезином, ацетилхолином, гистамином.

    Тормозят желчевыделение глюкагон, кальцитонин, ВИП.

    Непищеварительные функции печени



    Участие в углеводном обмене


    Печень является органом, поддерживающим нормальный уровень сахара в крови за счет процессов гликогенеза – превращения глюкозы в гликоген с помощью гормона поджелудочной железы инсулина.

    Если количество глюкозы в крови уменьшается, то депонированный в печени гликоген снова превращается в глюкозу – это гликогенолиз. При уменьшении запасов углеводов в крови в печени под влиянием гормонов коры надпочечников – глюкокортикоидов гликоген может синтезироваться из аминокислот и жиров – это гликонеогенез.


    Участие в белковом обмене


    В печени происходит метаболизм и анаболизм протеинов, дезаминирование аминокислот, обезвреживание аммиака и превращение его в мочевину, которая затем выводится почками, и креатинина. Печень продуцирует целый ряд плазменных белков: гамма-глобулины, альбумины, бета-глобулины.


    Участие в жировом обмене


    Печень синтезирует жирные кислоты, триглицериды, фосфолипиды, холестерин, кетоновые тела, участвует в их метаболизме. Она экстрагирует липиды из крови в виде хиломикронов и отвечает за их окисление в других тканях. В печени синтезируются липопротеиды высокой и низкой плотности.


    Печень – депо витаминов


    Печень принимает непосредственное участие в обмене и всасывании в кишечнике жирорастворимых витаминов A, D, Е. К. Каротин превращается в витамин А, который хранится в печени в течение 10 месяцев и высвобождается в кровь по мере его потребности. Витамин D хранится в печени от 3 до 4 месяцев, витамин В12 – от 1 года до нескольких лет. Печень депонирует также витамины В6 – пиридоксаль, рибофлавин, аскорбиновую, фолиевую и пантотеновую кислоты, витамин К.

    Кроме витаминов печень депонирует микроэлементы; железо в виде ферритина, медь, марганец, кобальт, цинк, молибден и ДР.


    Участие в свертывании крови


    В печени синтезируются такие факторы свертывания крови, как фибриноген (1-й фактор), протромбин (2-й фактор), проакцелерин (5-й фактор), проконвертин (7-й фактор), антигемофильный глобулин В (9-й фактор), фактор Стюарта – Прауэр (10-й фактор).


    Печень – депо крови


    Через печень проходит 29% от МОК. Печень участвует в перераспределительных реакциях кровеносной системы. Алкогольная интоксикация, отравление токсическими веществами вызывают цирроз печени – разрастание вокруг сосудов фиброзной ткани. Кроме того, застой крови в правом сердце, увеличение давления в системе воротной вены и полой вены вызывает переполнение кровью сосудов печени, в результате плазма выходит непосредственно через капсулу печени в брюшную полость. Это явление называется асцитом.


    Дезинтоксикационная функция печени


    Эта функция состоит в инактивации и выведении лекарственных препаратов (например, сульфаниламидов, антибиотиков и др.), гормонов, вредных веществ: аммиака, индола, скатола, фенола, алкоголя, который метаболизируется в основном в печени, а затем выводится с мочой и калом.


    Биотрансформация лекарственных препаратов в печени


    Пройдя через стенку желудка и кишечника, лекарственные препараты, прежде чем попасть в системное кровообращение, через портальную кровеносную систему проникают в печень, где они подвергаются метаболическим превращениям под действием ферментативных систем печени («эффект первичного превращения»). Поэтому дозы некоторых препаратов (пропранолол, аминазин, опиаты) при их приеме через желудочно-кишечный тракт должны быть больше, чем при внутривенном введении для достижения необходимого эффекта.

    Поскольку лекарства еще не попали в системное кровообращение, их первичные превращения в печени называют пресистемным метаболизмом, интенсивность которого зависит от скорости кровотока через печень. Для оценки пресистемного метаболизма используют формулу,


     f=1-Сlобщ/V


    где f – часть принятой внутрь дозы, достигающей общего кровотока; Сlобщ – общий клиренс препарата; V – скорость печеночного кровотока.
    Все лекарственные вещества делятся на две группы:

    1. с высоким печеночным клиренсом

    2. низким печеночным клиренсом.
    Для препаратов 1-й группы характерна высокая степень их экстракции гепатоцитами из крови. Способность печени метаболизировать эти препараты зависит от кровотока печени. Печеночный клиренс препаратов 2-й группы зависит преимущественно от емкости ферментативных систем печени, под действием которых происходят превращения лекарственных веществ, и от скорости их связывания с белками плазмы крови (дифенин – высокая скорость связывания, теофиллин, парацетамол – низкая).

    Биотрансформация лекарственных препаратов проходит в две фазы: 1-я фаза – окисление, гидроксилирование – это микросомальные и немикросомальные реакции, в результате которых образуются группы –ОН, –СООН, –Н, Н2; 2-я фаза – соединение этих веществ с глюкуроновой кислотой, сульфатами, глицином и образованием водорастворимых конъюгатов, которые легко выводятся из организма с калом и мочой. Таким путем удаляются эстрогены, прогестерон, наркотики, амидопирин, салицилаты, антибиотики и другие препараты.

    Многие лекарственные вещества после их биотрансформации в печени в виде метаболитов или в неизмененном виде с помощью активных транспортных систем экскретируются в желчь. Часть этих веществ выводится с калом, другая, под действием ферментов желудочно-кишечного тракта и бактериальной микрофлоры превращается в соединения, которые вновь реабсорбируются плазмой крови и попадают снова в печень, где они проходят процесс метаболических превращений или цикл энтерогепатической циркуляции.

    Гепатотропные средства



    Лекарственные препараты, применяемые для лечения заболеваний печени и желчевыводящих путей, в настоящее время делят на три группы:

    1. желчегонные

    2. гепатопротекторные

    3. холелитолитические средства.
    В свою очередь, в группу желчегонных входят препараты, усиливающие образование желчи и желчных кислот (холеретика или холесекретика – от греч. chole – желчь, ereto – раздражать), и препараты, способствующие выделению желчи из желчного пузыря в 12-перстную кишку (холагога или холекинетика – от греч. chole – желчь, ago – вести, гнать).

    К холеретикам относятся препараты, содержащие желчные кислоты и желчь: аллохол, ли обил, холензим и др., а также средства растительного происхождения (цветки бессмертника, кукурузные рыльца и др., а также ряд синтетических препаратов – оксафенамид, циквалон).

    Механизм действия холеретиков основан на раздражении слизистой кишечника и паренхимы печени, усилении моторики и секреции желудочно-кишечного тракта, что стимулирует образование желчи, а также на повышении осмотического градиента между желчью и кровью, который способствует фильтрации в желчные капилляры воды и электролитов, предупреждает образование желчных камней.

    Холекинетики действуют на тонус желчного пузыря, желчных путей и сфинктера Одди. Способствуют опорожнению желчного пузыря: магния сульфат, барбарис и др. Расслабление тонуса желчных путей вызывают такие спазмолитики, как папаверин, но-шпа и др. Кроме того, желчегонные препараты оказывают гепатопротекторное действие, облегчая отток желчи, уменьшая воспалительный процесс в гепатоцитах.

    К гепатопротекторам относятся препараты (легалон, лив-52, эссенциале и др.), повышающие устойчивость печени к патологическим воздействиям, способствующие восстановлению активности ее ферментативных систем, ингибирующие перекисное окисление липидов, – это витамины группы Р (рутин, кварцетин).

    Холелитолитические средства – это производные дезоксихолевой кислоты, снижающие содержание холестерина в желчи и растворяющие холестериновые камни в желчном пузыре (хенодиол, хенофалк).


    1   ...   22   23   24   25   26   27   28   29   ...   40


    написать администратору сайта