Матрицы. Исследование теоретической части по следующим аспектам линейное преобразование
Скачать 1.03 Mb.
|
Модель межотраслевого баланса В. Леонтьева Важным инструментом прогнозирования является разработанный В.Леонтьевым межотраслевой равновесный баланс, позволяющий анализировать экономику, как национальную, так и отдельных регионов и на основе этого вырабатывать адекватные меры. При анализе структурных взаимосвязей в национальной экономике в системе национального счетоводства используется балансовый метод, получивший названия «затраты-выпуск». В его основе лежит идея о том, что описание экономической системы можно осуществлять путём редукции процессов и продуктов, т.е. выражения через другие процессы и продукты. Таблица затраты - выпуск Василия Леонтьева впервые была опубликована в работе "Структура американской экономики в 1919-1929 гг. В 60—70-х годах метод «затраты-выпуск» и анализ межотраслевых балансов получили всеобщее признание в мировой экономической науке и стали обычными в статистической практике. В зависимости от цели исследования экономику можно изучать в различных разрезах - от уровня национальной экономики до уровня отдельных фирм и потребителей. Целью построения модели Леонтьева является анализ перетока товаров между отраслями экономики, обеспечивающего такое функционирование производственного сектора, когда объем выпуска соответствует суммарному (т.е. производственному и конечному) спросу на товары. Межотраслевой баланс в рамках единой модели объединяет балансы отраслей материального производства, баланс совокупного общественного продукта, балансы национальных доходов и расходов населения. Выделяют два важнейших соотношения, отражающих сущность межотраслевого баланса и являющиеся основой его экономико-математической модели. Во-первых, рассматривая схему баланса по столбцам, делают вывод, что итог материальных затрат любой потребляющей отрасли и её условно чистой продукции равен валовой продукции этой отрасли: Хi = ∑хij +Zj; j=1,..n. (1.1) Данное соотношение (1.1) отражает стоимостной состав продукции всех отраслей материальной сферы. Во-вторых, рассматривая схему по строкам для каждой производящей отрасли, можно видеть, что валовая продукция той или иной отрасли равна сумме материальных затрат потребляющих её продукцию отраслей и конечной продукции данной отрасли: Xi = ∑xij + Yj; i=1,..n. (1.2) Формула (1.2) описывает систему из n уравнений, которые называются уравнениями распределения продукции отраслей материального производства по направлениям использования. Просуммировав по отраслям уравнения (1.1), в результате получим: ∑Xj = ∑∑xij + ∑Zj При этом аналогичное суммирование уравнений (1.2) даст следующее: ∑Xi = ∑∑xij + ∑Yi Заметим, что левые части равенств равны, так как представляют собой весь валовый общественный продукт. Первые слагаемые правых частей этих равенств также равны. Следовательно, должно соблюдаться соотношение: ∑Zj = ∑Yi (1.3) это уравнение показывает, что в межотраслевом балансе соблюдается важнейший принцип единства материального и стоимостного состава национального дохода. Основу информационного обеспечения балансовых моделей в экономике составляет матрица коэффициентов затрат ресурсов по конкретным направлениям их использования. В модели межотраслевого баланса такую роль играет так называемая технологическая таблица – таблица межотраслевого баланса, составленная из коэффициентов прямых затрат на производство единицы продукции в натуральном выражении. Предполагается, что для производства единицы продукции j-той отрасли требуется определённое количество затрат промежуточной продукции i-той отрасли, равное aij. Оно не зависит от объёма производства в отрасли и является довольно стабильной величиной во времени. Величины aij называются коэффициентами прямых материальных затрат и рассчитываются следующим образом: aij = xij / Xj , (i,j = 1, 2,...,n) (2.1) Итак, коэффициент прямых материальных затрат показывает, какое количество продукции i-той отрасли необходимо, если учитывать только прямые затраты, для производства единицы продукции j-той отрасли. С учётом формулы (2.1) систему уравнений баланса можно переписать в виде: Хi = (ai1 x1 + ai2 x2 + ... + ain xn) + Yi , (i = 1, 2,...,n), или Xi= ∑aijXj+Yi (2.3) если ввести в рассмотрение матрицу коэффициентов прямых материальных затрат А, вектор-столбец валовой продукции X и вектор-столбец конечной продукции Y: || x1 || || a11 a12 ... a1n || || y1 || || x2 || || a21 a22 ... a2n || || y2 || X = || ... ||, A = || ... ... ... ... || , Y = || ... || , || xn || || a1n a2n ... ann || || yn || то система уравнений (2.3) в матричной форме примет вид: X=AX+Y (2.4) данное уравнение, где A - постоянная технологическая матрица и называется моделью Леонтьева. Интерпретируя выражение AX как затраты, эту систему часто называют моделью "затраты-выпуск”. С помощью этой модели можно выполнять три варианта расчетов: задав в модели величины валовой продукции каждой отрасли (Хi), можно определить объёмы конечной продукции каждой отрасли (Yi): Y= (E-A)X, (2.5) (при этом E обозначает единичную матрицу n-го порядка). задав величины конечной продукции всех отраслей (Yi), можно определить величины валовой продукции каждой отрасли (Xi): X=(E-A) Y, (2.6) (при этом (E-A )-1 обозначает матрицу, обратную (E-A)). для ряда отраслей задав величины валовой продукции, а для всех остальных отраслей задав объёмы конечной продукции, можно найти величины конечной продукции первых отраслей и объёмы валовой продукции вторых, в этом варианте расчёта удобнее пользоваться не матричной формой модели (2.4), а системой линейных уравнений (2.3). Итак, основная задача межотраслевого баланса состоит в отыскании такого вектора валового выпуска X, который при известной матрице прямых затрат A обеспечивает заданный вектор конечного продукта Y. Переписав матричное уравнение в виде: (E - A) X = Y, можно сделать следующие выводы: Если матрица (E - A) невырожденная (т.е. если ее определитель не равен нулю), тогда имеем: X = (E - A) -1 Y. Обозначим обратную матрицу В= (E - A)-1 Эта матрица В = (E - A)-1 называется матрицей полных затрат. В матричной форме уравнение (2.6) теперь запишется как: X=BY (2.7) Элементы матрицы В будем обозначать через bij, тогда из матричного уравнения (2.7) для любой i-той отрасли можно получить следующее соотношение: Xi =∑biYj, I=1…n В отличие от коэффициентов прямых затрат aij коэффициенты bij называются коэффициентами полных материальных затрат и включают в себя как прямые, так и косвенные затраты всех порядков. Если прямые затраты отражают количество средств производства, израсходованных непосредственно при изготовлении данного продукта, то косвенные относятся к предшествующим стадиям производства и входят в производство продукта не прямо, а через другие (промежуточные) средства производства. Чтобы выяснить экономический смысл элементов матрицы В = (bij), будем задаваться единичными векторами конечного продукта: || 1 || || 0 || || 0 || || 0 || || 1 || || 0 || Y1 = ||... ||, Y2 = ||....||,..., Yn = ||... || . || 0 || || 0 || || 1 || Тогда соответствующие векторы валового выпуска будут: ||s11|| ||s12|| ||s1n|| ||s21|| ||s22|| ||sn2|| Y1 = ||.. .||, Y2 =||... ||, ..., Yn = ||... ||. ||sn1|| ||sn2|| ||snn|| Следовательно, каждый элемент bij матрицы B есть величина валового выпуска продукции i-й отрасли, необходимого для обеспечения выпуска единицы конечного продукта j-й отрасли. В соответствии с экономическим смыслом задачи значения xi должны быть неотрицательны при неотрицательных значениях yi и aij. Необходимо отметить, что прежде чем воспользоваться методом Леонтьева, нужно определить продуктивна ли матрица. Матрица А называется продуктивной, если для любого вектора Y существует решение X уравнения (E - A) X = Y. В этом случае и модель Леонтьева называется продуктивной. Существует несколько критериев продуктивности матрицы А. Один из них говорит о том, что матрица А продуктивна, если максимум сумм элементов ее столбцов не превосходит единицы, причем хотя бы для одного из столбцов сумма элементов строго меньше единицы. Но данное условие является только достаточным. К необходимым же и достаточным условиям относят следующие (11,241): матрица (E-A) неотрицательно обратима, т.е. существует обратная матрица (E-A) ≥0; матричный ряд E + A +A²+A³ +…=∑ Aκ сходиться, причём его сумма равна обратной матрице (E-A); Вычислительные аспекты решения задач на основе модели межотраслевого баланса будут продемонстрированы в заключительной главе курсовой работы. Основной объём расчётов по этой модели связан с вычислением матрицы коэффициентов полных материальных затрат. Рассмотренная выше межотраслевая модель является статической, т.е. такой в которой все зависимости отнесены к одному моменту времени. Такие модели могут разрабатываться лишь для отдельно взятых периодов, причём в рамках данных моделей не устанавливается связь с предшествующими или последующими периодами. Народнохозяйственная динамика отображается, таким образом, рядом независимо рассчитанных моделей, что вносит определённые упрощения и сужает возможности анализа. К числу таких упрощений прежде всего следует отнести то, что в статических межотраслевых моделях не анализируется распределение, использование и производственная эффективность капитальных вложений. Капиталовложения вынесены из сферы производства в сферу конечного использования вместе с предметами потребления и непроизводственными затратами, т.е. включены в конечный продукт. Заключение Были выполнены следующие задачи: Изучение линейного преобразования, а также формул по данной теме; Изучение матриц линейного преобразования и решение примеров; Исследование понятия определителя линейного преобразования, а также свойств определителей второго порядка, исследование алгоритма определения определителей второго, третьего и четвертого порядков, а также решение примеров на вычисление определителя; Рассмотрение линейных преобразований, вырожденных и невырожденных; Изучение действий над матрицами, в особенности умножения, исследование алгоритма действия и решение примеров. Основное применение данный математический аппарат нашел в методе межотраслевого баланса В. Леонтьева. Межотраслевой баланс объединяет балансы отраслей материального производства, баланс совокупного общественного продукта, балансы национальных доходов и расходов населения. В настоящее время в национальной экономике существуют и продолжают возникать сложные проблемы, требующие межотраслевых обоснований. Использование же метода “затраты–выпуск” межотраслевого баланса позволяет не только изучить взаимозависимость между различными отраслями экономики, проявляющуюся во взаимовлиянии цен, объемов производства, капиталовложений и доходов, но и решать следующие задачи: - прогноз основных макроэкономических показателей (выпуск валового и конечного продукта, чистая продукция, материальные затраты, производственное потребление продукции и др. в разрезе отраслей материального производства) в зависимости от изменения как внешних, так и внутренних факторов; - прогноз оптовых цен продукции отраслей материального производства, уровня инфляции, стоимости потребительской корзины; - прогноз уровня безработицы; - прогноз экологической обстановки и оценка затрат на проведение природоохранных мероприятий; - оценка эффективности конкретных предложений по размещению производительных сил; - оценка эффективности межтерриториальных экономических связей; - и многих других. Таким образом, на основе моделей В. Леонтьева может быть разработан комплекс моделей функционирования экономики с целью определения рациональных стратегий управления социально-экономическим развитием региона и страны в целом. Список использованной литературы Александров П. С., Лекции по аналитической геометрии, М., 1968; Мальцев А. И., Основы линейной алгебры, 3 изд., М., 1970; Ефимов Н. В., Розендорн Э. P., Линейная алгебра и многомерная геометрия, М., 1970; Гранберг А. Г., Василий Леонтьев в мировой и отечественной экономической науке // Вопросы экономики, М., 1999, № 3. |