ответы на вопросы по иммунологии. Исторические этапы взаимодействия человека с инфекцией
Скачать 445.09 Kb.
|
10) Антигены. Понятие об антигенности. Происхождение и химическая структура антигенов. Биологическая роль. Понятие об антигенных детерминантах и эпитопах. Свойства антигенов. АГ- высокомолекулярные вещества, которые при попадании в организм животного или человека вызывают образование специфических АТ. Аг обладают определенными свойствами: чужеродность, антигенность, иммунность, специфичность. Чужеродность это отличие АГ от веществ которые в норме присутствуют в организме. АГ являются чужеродными белками. Антигенность- способность АГ связываться с АТ в основе лежат структурные и химические особенности. Иммунногенность - способность АГ вызывать имунный ответ т.е образовывать АТ в пораженном организме. Специфичность - особенности строения по которым АГ отличаются от друг друга. Различают АГ: видовые, групповые, специфические. По расположению в микробной клетке: капсульные(к), соматические(о), жгутиковые(н). Эпитоп-антигенная детерминанта — часть макромолекулы антигена, которая распознаётся иммунной системой (антителами, B-лимфоцитами, T-лимфоцитами). Часть антитела, распознающая эпитоп, называется паратопом. 11) Иммуногенность и специфичность антигенов. Виды специфичности. Факторы, влияющие на иммуногенность и специфичность антигенов. Иммуногенность — потенциальная способность антигена вызывать по отношению к себе в макроорганизме специфическую защитную реакцию. Степень иммуногенности зависит от ряда факторов, которые можно объединить в три группы: Молекулярные особенности антигена; Клиренс антигена в организме; Реактивность макроорганизма. Специфичность – свойство, по которому антигены различаются между собой и определяющее способность избирательно реагировать со специфическими антителами или сенсибилизированными лимфоцитами. Факторы, определяющие специфичность: - Химическая природа антигенной детерминанты. - Строение антигенной детеминанты (вид и последовательность аминокислот в первичной полипептидной цепи). - Пространственная конфигурация антигенных детерминант. Антигены микроорганизмов в зависимости от систематического положения: 1. Видоспецифические – антигены одного вида микроорганизмов. 2. Группоспецифические – антигены одной группы в пределах вида (подразделяют микроорганизмы на серогруппы). 3. Типоспецифические – антигены одного типа (варианта) в пределах вида (подразделяют микроорганизмы на серовары/серотипы) 12) Антигены как биологические маркеры чужеродности. Классификация. Основные понятия (в т.ч. аллергены, аутоантигены, толерогены и т. д.) Основная функция иммунной системы состоит в защите организма от биологической агрессии, исходящей, как правило, извне от патогенов и их продуктов, чужеродных для макроорганизма. Эндогенная агрессия в виде развития опухолей тоже часто связана с приобретением собственными клетками организма определенных черт чужеродности. Ранее в качестве маркеров чужеродности рассматривали именно антигены. В настоящее время более значимыми носителями признаков чужеродности считают PAMP, поскольку именно они ответственны за включение процессов, составляющих основу иммунной защиты. Соответствие между PAMP (отвечают за активацию врожденного иммунитета) и антигенами (отвечают за запуск адаптивного иммунитета) не до конца выяснено. В ряде случаев одна и та же молекула сочетает в себе свойства PAMP и антигена, в других случаях в роли PAMP и антигена выступают разные молекулы патогенов. В любом случае чужеродные молекулы можно рассматривать как маркеры клеток, потенциально опасных для организма. Эти молекулы служат наиболее ранним сигналом опасности, распознаваемым задолго до проявления патогеном своих вредоносных качеств. Таким образом, эволюция избрала косвенный путь выявления потенциально опасных агентов по их чужеродности для данного организма. Это послужило основанием для определения антигенов, данного Р.В. Петровым: антигены — это биологические тела и молекулы, несущие признаки чужеродной генетической информации. Поскольку чужеродность проявляется относительно конкретного организма, молекула, воспринимаемая как антиген одним организмом, может не восприниматься в качестве такового другим организмом. Связь антигенности с чужеродностью макромолекулы для данного организма наглядно проявляется при оценке иммуногенности гомологичных белков. Иммуногенность возрастает по мере увеличения «эволюционного расстояния» между донором и реципиентом белка. В основе повышения иммуногенности лежит увеличение различий в первичной структуре белков. Эти закономерности используют при серологической оценке степени эволюционного родства видов. Даже единичные замены аминокислот, лежащие в основе внутривидового антигенного полиморфизма (в частности, в системе гистосовместимости), эффективно распознаются с помощью антител, особенно при аллоиммунизации (т.е. иммунизации материалом от генетически неидентичных особей того же вида). Комбинация достаточно большого числа полиморфных генов (особенно высокополиморфных генов гистосовместимости) обеспечивает биологическую индивидуальность, которая проявляется, в частности, в отторжении тканей при аллотрансплантации. По этой же причине, хотя и не во всех случаях, организм распознает неоантигены, возникающие вследствие мутаций. Однако чужеродность — не абсолютная характеристика антигена. Об этом свидетельствует возможность образования аутоантител, т.е. антител к собственным молекулам организма. В тех случаях, когда в качестве аутоантигенов выступают компоненты тканей, в норме изолированных от иммунной системы («забарьерные ткани»), нарушения общего принципа чужеродности не происходит, поскольку для иммунной системы эти ткани «чужие». В других случаях аутоантитела образуются в ответ на действие чужеродных молекул, имеющих структурное сходство с аутологичными компонентами. Эти антитела взаимодействуют как с чужеродным иммуногеном, так и с аутоантигеном. Так бывает, например, при стрептококковой инфекции, при которой образуются антитела к микробным полисахаридам, реагирующие также с антигенами собственной соединительной и эпителиальной тканей. Однако выявляют также истинную реакцию иммунной системы на собственные антигены. Это происходит не только при патологии (нарушение условий презентации антигена лимфоцитам, дефекты селекции лимфоцитарных клонов, дефицит регуляторных клеток и т.д.), но и в норме. В организме всегда присутствуют многочисленные аутоантитела, взаимодействующие с собственными молекулами организма. Такие антитела продуцируются в основном В1-клетками. Эти антитела обладают низким сродством к антигенам, часто полиспецифичны; они не способны активировать некоторые эффекторные механизмы врожденного иммунитета (например, разрушение носителя антигена фагоцитом). В связи с этим такие аутоантитела не повреждают ткани, а напротив, выполняют ряд важных функций (транспорт макромолекул, элиминацию отработавших молекул и другие гомеостатические функции). Функционально важную группу аутоантител образуют антитела к идиотопам иммуноглобулинов (анти-антитела).Они копируют конфигурации антигенных эпитопов, служа их «внутренними образами» и играют определенную роль в регуляции иммунного ответа 13) Пути проникновения антигенов в организм и их влияние на формирование иммунного ответа. Элиминация антигенов из организма: пути, фазы, биологическая роль. Персистенция антигенов в организме Антигены, как правило, являются белками или полисахаридами и представляют собой части бактериальных клеток, вирусов и других микроорганизмов. Липиды и нуклеиновые кислоты, как правило, проявляют иммуногенные свойства только в комплексе с белками. Простые вещества, даже металлы, также могут вызывать продукцию специфичных антител, если они находятся в комплексе c белком-носителем. Такие вещества называют гаптенами. Экзогенные антигены попадают в организм из окружающей среды, путем вдыхания, проглатывания или инъекции. Такие антигены попадают в антиген-представляющие клетки путем эндоцитоза или фагоцитоза и затем процессируются на фрагменты. Антиген-представляющие клетки затем на своей поверхности презентируют фрагменты Т-хелперам (CD4+) через молекулы главного комплекса гистосовместимости второго типа. Эндогенные антигены образуются клетками организма в ходе естественного метаболизма или в результате вирусной или внутриклеточной бактериальной инфекции. Фрагменты далее презентируются на поверхности клетки в комплексе с белками главного комплекса гистосовместимости первого типа MHC I. В случае, если презентированные антигены распознаются цитотоксическими лимфоцитами (CTL, CD8+), Т-клетки секретируют различные токсины, которые вызывают апоптоз или лизис инфицированной клетки. Для того, чтобы цитотоксические лимфоциты не убивали здоровые клетки, аутореактивные Т-лимфоциты исключаются из репертуара в ходе отбора Аутоантигены - это как правило нормальные белки или белковые комплексы (а также комплексы белков с ДНК или РНК), которые распознаются иммунной системой у пациентов с аутоиммунными заболеваниями. Такие антигены в норме не должны узнаваться иммунной системой, но, ввиду генетических факторов или условий окружающей среды, иммунологическая толерантность к таким антигенам у таких пациентов может быть утеряна. Элиминация антигена (эффекторная фаза). Эта фаза является стадией, при которой лимфоциты, специфически активированные антигеном, выполняют функцию элиминации. Лимфоциты, участвующие в этой фазе иммунного ответа, называют эффекторными иммуногенетики о толерантности. 14) Клеточные основы гуморального иммунитета (В-лимфоциты). Типы В-лимфоцитов. Этапы В-лимфопоэза. Трансформация В-лимфоцитов в плазматические клетки. Основные процессы. В-лимфоцитопоэз и плазмоцитопоэз. Этап I осуществляется в красном костном мозге, где образуются следующие классы клеток: I (СК) → II (ПСК) – предшественницы лимфопоэза → III класс – унипотентные В-лимфопоэтинчувствительные клетки – предшественницы В-лимфоцитопоэза. Этап II – антигеннезависимой дифференцировки – у птиц осуществляется в специальном центральном лимфоидном органе – фабрициевой сумке. Его аналог у человека точно не установлен. Большинство исследователей считают, что II этап также происходит в красном костном мозге: из унипотентных В-клеток-предшественниц образуются В-лимфобласты (IV класс), В-пролимфоциты (V класс) и В-лимфоциты рецепторные (VI класс). В-лимфоциты приобретают на этом этапе разнообразные рецепторы к антигенам – иммуноглобулины, которые синтезируются в самих созревающих В-лимфоцитах. Этап III – антигензависимой дифференцировки – происходит в В-зонах периферических лимфоидных органов, где происходят встреча антигена с соответствующим В-рецепторным лимфоцитом, активация и трансформация последнего в иммунобласт – плазмобласт, а затем образуется клон клеток, среди которых различают: – В-лимфоциты памяти; – плазмоциты, которые являются эффекторными клетками гуморального иммунитета. Они синтезируют и выделяют в кровь или лимфу иммуноглобулины (антитела) разных классов, которые образуют комплексы антиген – антитело, нейтрализуя антигены. Иммунные комплексы затем фагоцитируются нейтрофилами и макрофагами. Для реакции бласттрансформации В-лимфоцита необходима кооперация В-рецепторного лимфоцита, макрофага, Т-хелпера (Т-супрессора), а также гуморального антигена. Развитие NK-клеток происходит независимо от образования Т– и В-лимфоцитов из костно-мозгового предшественника; – после выхода в кровь NK-клетки циркулируют в ней или мигрируют в селезенку; – дозревание NK-клеток происходит в тканях под влиянием малоизученных факторов микроокружения. Типы зрелых В-лимфоцитов: В-клетки рождаются и созревают в костном мозге, в ыходят в кровь, переносятся в селезенку и лимфоузлы. Там они взаимодействуют с антигенами вредоносных частиц или Т-лимфоцитами. В результате В-лимфоциты частично превращаются в плазматические клетки, выделяющие антитела, а частично в клетки памяти. Благодаря постоянной работе костного мозга количество лимфоцитов в крови поддерживается на стабильном уровне, а иммунная система исправно работает. Соответственно, В-клетки делятся на три основных типа. 1. Наивные В-лимфоциты, или собственно В-клетки. Это клетки лимфоциты, которые только что созрели, отправились из костного мозга в органы иммунитета и еще не встретились с антигеном. Если в крови пациента с любым долготекущим заболеванием лимфоциты выше нормы, то это главным образом как раз наивные В-клетки, которые усиленно образуются костным мозгом. 2. Активированные В-лимфоциты, или клетки памяти. Ими представлена небольшая часть В-клеток, которые встретились с Т-лимфоцитами. Они получают от них информацию о вредоносных объектах, с которыми справился иммунитет. После такого «общения» они определенным образом меняют свое строение и биохимию. Клетки памяти являются долгоживущим клоном. Иногда продолжительность их жизни составляет годы и десятилетия. Их значение очевидно: они помнят о встреченном антигене (антиген - «метка» бактерии или другого вредоносного объекта), и его носитель когда-нибудь повторно попадает в организм, эти клетки тут же стимулируют быстрый иммунный ответ. Именно клетки памяти формируют пожизненный иммунитет к некоторым заболеваниям. В ряде случаев количество клеток памяти со временем может уменьшаться. Тогда иммунитет против конкретной болезни поддерживается до тех пор, пока количество лимфоцитов в крови остается большим, но постепенно слабеет со временем. 3 . Плазматические клетки (плазмоциты). Когда наивные В-клетки активируются антигеном, то все лимфоциты, не ставшие клетками памяти, становятся плазмоцитами. Они видоизменяются: в них сильно развиваются эндоплазматическая сеть и комплекс Гольджи. Эти органеллы хорошо представлены в тех клетках, которым предстоит интенсивно что-то производить. Плазмоциты тоже занимаются процессами синтеза; они выделяют антитела, агрессивно действующие на проникший в организм чужеродный объект. В отличие от предыдущей группы, эти лимфоциты недолго сохраняются выше нормы: как только агрессор выводится из организма, клетки сразу погибают. В1 и В2 – лимфоциты: Помимо классификации, приведенной выше, существует разделение лимфоцитов на подгруппы В1 и В2. Они отличаются друг от друга тем, что выделяют разные группы антител. В1-лимфоциты выделяют антитела, которые характерны для борьбы с недавно проникшим в тело агрессором (иммуноглобулины М). Других защитных веществ они синтезировать не могут. По этой причине клетки данного вида располагаются в прибарьерных полостях. Они располагаются там затем, чтобы встретить микробы, когда те только-только прошли через защитные препятствия. По выполняемым задачам В1-лимфоциты можно сравнить с пограничниками: они ловят и устраняют только объекты, которые только что нарушили запретные барьеры. В2-клетки выделяют защитные факторы, которые активны преимущественно против инфекций, уже успевших обосноваться в организме (иммуноглобулины G). Их действия можно сравнить с активностью полиции, которая борется с действующими преступниками. Большая часть В-лимфоцитов в организме представлена В1-типом. 15) Методы количественного подсчета В-лимфоцитов в биологических жидкостях. Реакция иммунофлюоресценции - РИФ. Различают три разновидности метода прямой, непрямой, с комплементом. Является методом экспресс-диагностики для выявления антигенов микробов или определения антител. Прямой метод РИФ основан на том, что антигены тканей или микробы, обработанные иммунными сыворотками с антителами, меченными флюорохромами, способны светиться в УФИ люминесцентного микроскопа. Бактерии в мазке, обработанные такой люминесцирующей сывороткой, светятся по периферии клетки в виде каймы зеленого цвета. Непрямой метод РИФ заключается в выявлении комплекса антиген - антитело с помощью антиглобулиновой (против антитела) сыворотки, меченной флюорохромом. Для этого мазки из взвеси микробов обрабатывают антителами антимикробной кроличьей диагностической сыворотки. Затем антитела, не связавшиеся антигенами микробов, отмывают, а оставшиеся на микробах антитела выявляют, обрабатывая мазок антиглобулиновой (антикроличьей) сывороткой, меченной флюорохромами. В результате образуется комплекс микроб + антимикробные кроличьи антитела +антикроличьи антитела, меченные флюорохромом. Этот комплекс наблюдают в люминесцентном микроскопе, как и при прямом методе. Популярность РИФ объясняется экономичностью, наличием широкого спектра диагностических наборов, быстротой получения ответа. Основным недостатком РИФ является ее субъективность. Радиоиммунный анализ (РИА) - высокочувствительный метод, основанный на реакции антиген - антитело с применением антигенов или антител, меченных радионуклидом (125J, 14С, ЗН, 51Сг и др.). После их взаимодействия отделяют образовавшийся радиоактивный иммунный комплекс и определяют его радиоактивность в соответствующем счетчике (бета- или гамма-излучение). Интенсивность излучения прямо пропорциональна количеству связавшихся молекул антигена и антител. Иммуиоферментный анализ (ИФА) - выявление антигенов с помощью соответствующих им антител, конъюгированных с ферментом-меткой (пероксидазой хрена, бета-галактозидазной и или щелочной фосфатазой). После соединения антигена с меченой ферментом иммунной сывороткой в смесь добавляют субстрат/хромоген. Субстрат расщепляется ферментом и изменяется цвет продукта реакции - интенсивность окраски прямо пропорциональна количеству связавшихся молекул антигена и антител. Твердофазный ИФА - вариант теста, когда один из компонентов иммунной - реакции (антиген или антитело) сорбирован на твердом носителе, напр., в лунках планшеток из полистирола. Компоненты выявляют добавлением меченых антител или антигенов. При положительном результате изменяется цвет хромогена. |