Главная страница

Конспект по офтальмологии


Скачать 0.62 Mb.
НазваниеКонспект по офтальмологии
Дата27.04.2022
Размер0.62 Mb.
Формат файлаdoc
Имя файлаotvety_po_oftalmologii.doc
ТипКонспект
#500070
страница3 из 9
1   2   3   4   5   6   7   8   9
, внутренний пограничный слой (мембрана), отделяющий сетчатку от стекловидного тела. Между структурными элементами сетчатки находится коллоидное межуточное вещество. Сетчатка глаза человека относится к типу инвертированных оболочек — световоспринимающие элементы (палочки и колбочки) составляют самый глубокий слой сетчатки и прикрыты другими ее слоями. В заднем полюсе глаза расположено пятно сетчатки (желтое пятно) — место, обеспечивающее наиболее высокую остроту зрения. Оно имеет овальную вытянутую в горизонтальном направлении форму и углубление в центре — центральную ямку, содержащую только одни колбочки. Кнутри от желтого пятна находится диск зрительного нерва, в зоне которого светочувствительные элементы отсутствуют.

21. Анатомия наружных мышц глаза.

К глазодвигательным мышцам относятся четыре прямые—вeрхняя (m. rectus superior), нижняя(m.. rectus inferior) ,латеральная (m. rectus lateralis) и медиальная (m. rectus medialis) и две косые— верхняя и нижняя (m. obliguus superior et m. obliguus inferior). Все мышцы (кроме нижней косой) начинаются от сухожильного кольца , соединённого с периостом орбиты вокруг канала зрительного нерва. Они идут вперед расходящимся пучком, образуя мышечную воронку , прободают стенку влагалища глазного яблока(тенонову капсулу ) и прикрепляются к склере: внутренняя прямая мышца — на расстоянии 5,5 мм от роговицы , нижняя —6,5мм, наружная — 7 мм, верхняя,— 8 мм. Линия прикрепления сухожилий внутренней и наружной прямых мышц идет параллельно лимбу, что обусловливает чисто боковые движения, Внутренняя прямая мышца поворачивает глаз кнутри, а наружная кнаружи. Линия прикрепления верхней и нижней прямых мышц располагается косо: височный конец отстоит от лимба даль­ше , чем носовой. Такое прикрепление обеспечивает поворот не только кверху и книзу, но одновременно и кнутри. Следовательно, верхняя прямая мышца обеспечивает поворот глаза кверху и кнутри , нижняя прямая — книзу и кнутри. Верхняя косая мышца идет также от сухожильного кольца канала зрительного нерва , направляется затем кверху и кнутри, перебрасывается через костный блок орбиты, поворачивает назад к глазному яблоку, проходит под верхней прямой мышцей и веером прикрепляется позади экватора.. Верхняя косая мышца при сокращении поворачивает глаз книзу и кнаружи. Нижняя косая мышца берет начало от надкостницы нижневнутреннего края орбиты , проходит под нижней прямой мышцей и прикрепляется к склере позади экватора. При сокращении эта мышца поворачивает глаз кверху и кнаружи.
22. Анатомия хрусталика и его функции.

Хрусталик (lens) — прозрачное преломляющее свет эластичное образование, имеющее форму двояковыпуклой линзы, расположен во фронтальной плоскости за радужкой. В нем различают экватор и два полюса — передний и задний. Диаметр хрусталика составляет 9—10 мм, переднезадний размер — 3,7—5 мм. Хрусталик состоит из капсулы (сумки) и вещества. Внутренняя поверхность передней части капсулы покрыта эпителием, клетки которого имеют шестиугольную форму. У экватора они вытягиваются и превращаются в хрусталиковые волокна. Образование волокон совершается в течение всей жизни. Одновременно в центре хрусталика волокна постепенно уплотняются, что приводит к формированию плотного ядра — ядра хрусталика Участки, расположенные ближе к капсуле, называются корой хрусталика. Сосуды и нервы в хрусталике отсутствуют. К капсуле хрусталика прикреплен ресничный поясок, идущий от ресничного тела. Разная степень натяжения ресничного пояска приводит к изменению кривизны хрусталика, что наблюдается при аккомодации.

Хрусталик(lens) развивается из эктодермы. Это исключительно эпителиальное образование. Он изолирован от остальных оболочек глаза капсулой , не содержит нервов, сосудов и каких-либо мезодермальных клеток.

По силе преломления хрусталик является второй средой(после роговицы) оптической системы глаза. Его преломляющая сила в среднем 18 дптр. Расположен хрусталик между радужкой и стекловидным телом , в углублении передней поверхности последнего. Удерживают его в этом положении волокна ресничного пояска (fibrae zonulares), которые другим своим концом прикрепляются к внутренней поверхности ресничного тела.

Хрусталик с ресничным пояском образует реснично- хрусталиковую диафрагму. , которая делит полость глаза на две неравные части: меньшую – переднюю и большую –заднюю .
23. Передняя камера глаза и ее значение.

Передняя камера(camera anterior) – пространство , переднюю стенку которого образует роговица , заднюю –радужка , а в области зрачка- центральная часть передней капсулы хрусталика . Место, где роговица переходит в склеру, а радужка –в ресничное тело , называется углом передней камеры. У вершины угла передней камеры находится поддерживающий остов угла камеры- корнеосклеральная трабекула . В образовании трабекулы принимают участие элементы роговицы, радужки и цилиарного тела. Трабекула в свою очередь является внутренней стенкой венозной пазухи склеры, или шлеммова канала. Остов угла и венозная камера склеры имеют очень важное значение для циркуляции жидкости в глазу. Это основной путь оттока внутриглазной жидкости. Глубина передней камеры вариабельна. Наибольшая глубина отмечается в центральной части передней камеры , расположенной против зрачка. Здесь она достигает 3-3,5 мм. В условиях патологии диагностическое значение приобретает как глубина камеры , так и е неравномерность.
24. Внутренние мышцы глаза.

Радужка имеет две мышцы: сфинктер и дилататор. Сфинктер располагается в зрачковой зоне стромы радужки. Дилататор находится в составе в наружной зоны внутреннего пигментного слоя. В результате взаимодействия двух антагонистов –сфинктера и дилататора –радужная оболочка выполняет роль диафрагмы глаза , регулирующей поток световых лучей.

Ресничная , или аккомодационная мышца состоит из гладких мышечных волокон , идущих в трех направлениях- в меридиональном , радиальном и циркулярном. Меридиональные волокна подтягивают хориоидею кпереди, в связи с чем эта часть мышцы называется tensor chorioideae. Радиальная часть ресничной мышцы идет от склеральной шпоры к ресничным отросткам и плоской части ресничного тела. Циркулярные мышечные волокна не образуют компактной мышечной массы, проходят в виде отдельных пучков.

Сочетанное сокращение всех пучков ресничной мышцы обеспечивает аккомодационную функцию ресничного тела.
25. Анатомия и физиология стекловидного тела.

Стекловидное тело способствует сохранению тургора и формы глазного яблока обладает амортизационными свойствами (движения стекловидного тела сначала являются равномерно ускоренными, а затем равномерно замедленными).

На долю воды приходится около 99% всего стекловидного тела. Тем не менее вязкость стекловидного тела в несколько десятков раз выше вязкости воды. Вязкость стекловидного тела обусловлена содержанием в его остове особых белков- витрозина и муцина. С мукопротеидами связана гиалуроновая кислота , играющая важную роль в поддержании тургора глаза.

Первичное стекловидное тело является мезодермальным образованием . Вторичное стекловидное тело состоит из мезодермы и эктодермы.

Стекловидное тело не регенерирует , замещается внутриглазной жидкостью.

Стекловидное тело прикрепляется к окружающим его отделам глаза в нескольких местах.

Главное место прикрепления называют основой, или базисом , стекловидного тела. Основа представляет собой кольцо , выступающее несколько кпереди от зубчатого края. В области базиса стекловидное тело прочно тесно связано с ресничным эпителием. Эта связь настолько прочна, что при отделении стекловидного тела от основы в изолированном глазу вместе с ним отрываются эпителиальные части ресничных отростков , оставаясь прикрепленными к стекловидному телу. Второе по прочности место прикрепления стекловидного тела –к задней капсуле хрусталика- называется гиалоидохрусталиковой связкой .

Третье заметное прикрепления стекловидного тела приходится на область диска зрительного нерва и по размерам соответствует примерно площади диска зрительного нерва. Это место прикрепления наименее прочное из трех перечисленных. Существуют также места более слабого прикрепления стекловидного тела в области экватора глазного яблока.

При электронной микроскопии установлено , что стекловидное тело имеет фибриллярную структуру. Фибриллы имеют величины около 25нм.
26. Анатомическое строение слизистой оболочки глаза.

Передняя поверхность глазного яблока до роговицы покрыта слизистой оболочкой — конъюнктивой, часть которой переходит на заднюю поверхность верхнего и нижнего века. Место перехода конъюнктивы с верхнего и нижнего века на глазное яблоко называется соответственно верхним и нижним сводом конъюнктивы. Щелевидное пространство, ограниченное спереди веками, а сзади передним отделом глазного яблока, образует конъюнктивальный мешок. Во внутреннем углу глаза конъюнктива участвует в образовании слезного мясца и полулунной складки. Конъюнктива состоит из эпителиального слоя, соединительнотканной основы и желез. Она имеет бледно-розовую окраску, рыхло соединена с глазным яблоком (за исключением области лимба), что способствует ее свободной смещаемости, а также быстрому возникновению отека при воспалении; обильно снабжена кровеносными сосудами и нервами. Конъюнктива выполняет защитную функцию; секрет желез способствует уменьшению трения при движениях глазного яблока, предохраняет роговицу от высыхания.

Конъюнктивой называется тонкая оболочка, выстилающая заднюю поверхность век, и, глазное яблоко вплоть до роговицы. Собственно передний прозрачный эпителий роговицы вместе с подлежащей передней пограничной пластинкой эмбриогенетически также относится к конъюнктиве. При закрытой глаз­ной щели соединительная оболочка образует замкнутую полость — конъюнктивальный мешок — узкое щелевидное про­странство между веками и глазом. Часть конъюнктивы, покры­вающую заднюю поверхность век, называют конъюнктивой век; часть, покрывающую передний сегмент глазного яблока, — конъюнктивой глазного яблока или склеры. В той части, где конъюнктива век, образуя своды, переходит на глазное яб­локо, ее называют конъюнктивой переходных складок, или сводом.. К конъюнктиве относятся также рудимент третьего века — вертикальная полулунная складка, прикрывающая глазное яблоко у внутреннего угла глазной щели, и слезное мясцо — образование, по строению близкое к коже.

Конъюнктива век плотно сращена с хрящевой пластинкой. Эпителий здесь многослойный цилиндрический с большим количеством бокаловидных клеток, выделяющих слизь. При внешнем осмотре конъюнктива век представляется гладкой, бледно-розовой, блестящей оболочкой. Под ней при нормальном состоянии просвечиваются заложенные в толще хряща перпендикулярно реснично­му краю века желтоватые столбики желез. Лишь у наружного и внутреннего конца век покрывающая их слизистая оболочка выглядит слегка гиперемированной и бархатистой за счет сосочков. Конъюнктива переходных складок рыхло связана с прилежащими тканями, а в сводах как бы несколько избыточна, чтобы не ограничивать глазное яблоко при его движениях. В этой части конъюнктивы эпителий из многослойного цилиндрического переходит в многослойный плоский, содержащий мало бокаловидных клеток. Субэпителиальная ткань здесь богата скоплениями лимфоидных клеток — фолликулами. В конъюнктиве верхней переходной складки имеется большое количество слезных железок.

Нежная, рыхло связанная с эписклерой слизистая оболочка, покрывающая переднюю поверхность глазного яблока, выполняет функцию покровного чувствительного эпителия. Многослойный плоский эпителий этой части конъюнктивы без резких границ переходит на роговицу и, имея аналогичное строение, в нормальном. состоянии никогда не ороговевает.
27. Гистология собственно-сосудистой оболочки.

Хориоидея- собственно сосудистая оболочка – задняя, самая обширная часть сосудистой оболочки от зубчатого края до зрительного нерва. Она плотно соединена со склерой только вокруг места выхода зрительного нерва.

Толщина хориоидеи колеблется от 0,2 до 0,4 мм. Она состоит из четырех слоев: 1) надсосудистой пластинки , состоящей из тонких соединительнотканных тяжей , покрытых эндотелием и многоотростчатыми клетками; 2) сосудистой пластинки , состоящей главным образом из многочисленных анастомозирующих артерий и вен; 3) сосудисто-капиллярной пластинки; 4)базальной пластинки , отделяющей сосудистую оболочку от пигментного слоя сетчатки.
28. Определение понятий слепоты (теоретическая и практическая слепота).

Практическая слепота понижение функциональной способности зрительного анализатора до уровня, не дающего возможности осуществлять большинство видов профессиональной деятельности и ограничивающего возможность передвижения и самообслуживания. Острота зрения лучше видящего глаза не превышает 0,03 и не может быть корригирована или поле зрения обоих глаз концентрически сужены до 5—10°.

Теоретическая слепота- острота зрения равна нулю и восприятие света также отсутствует.
29. Понятие о слепом пятне и методы его исследования.

Слепое пятно (macula caeca) —участок выпадения поля зрения, соответствующий проекции диска зрительного нерва; физиологическая абсолютная скотома.

 Кампиметрия позволяет определить локализацию и измерить слепое пятно (пятно Мариотта), соответствующее проекции диска зрительного нерва и расположенное парацентрально в височной половине поле зрения на 15° латеральнее точки фиксации по горизонтальному меридиану, а также другие парацентральные и центральные дефекты зрительного восприятия.
30. Функции желтого пятна, методы исследования.

В заднем полюсе глаза расположено пятно сетчатки (желтое пятно) — место, обеспечивающее наиболее высокую остроту зрения. Оно имеет овальную вытянутую в горизонтальном направлении форму и углубление в центре — центральную ямку, содержащую только одни колбочки. Поле зрения . имеет периферические и центральные отделы. Центральные отделы находятся в проекции желтого пятна и обеспечивают центральное зрение, осуществляемое колбочками.

Методы исследования: офтальмоскопия(для исследования используются специальные приборы-офтальмоскопы; наряду с ручными выпускают и стационарные офтальмоскопы со значительным увеличением и большим полем зрения.).

Офтальмоскопия.

В зависимости от оптической схемы прибора изображение может быть перевернутым (офтальмоскопия в обратном виде) или прямым (офтальмоскопия в прямом виде). Офтальмоскопия в обратном виде используется для общего осмотра глазного дна . и проводится с помощью зеркального офтальмоскопа, состоящего из вогнутого зеркала с отверстием в центре и лупы. Для более тщательного исследования осуществляют офтальмоскопию в прямом виде с применением электрического офтальмоскопа, создающего увеличение в 8—16 раз.

Не видимые при обычном освещении детали глазного дна можно выявить при исследовании в цвете (красном, бескрасном, желтом, желто-зеленом, синем и пурпурном) — офтальмохромоскопии.

Глазное дно при офтальмологическом исследовании с обычным источником света имеет красный цвет. На красном фоне глазного дна выделяются диск зрительного нерва, желтое пятно и сосуды сетчатки. Чрезвычайно важное значение при осмотре глазного дна имеет область желтого пятна с центральной ямкой, расположенного кнаружи от височной границы диска зрительного нерва. Желтое пятно выделяется более темной окраской и имеет форму горизонтально расположенного овала. В центре желтого пятна просматривается темное круглое пятнышко — ямочка.
31. Методы исследования периферического зрения.

Периметрию применяют в основном для изучения периферических отделов поля зрения., при котором определяют границы поля зрения , выявляют дефекты зрительного восприятия — скотомы, обусловленные расположенными впереди сетчатки кровеносными сосудами (ангиоскотомы) или нарушениями зрительной функции (патологической скотомы). Кинетическая и статическая периметрия основана на фиксации момента появления движущегося или неподвижного тест-объекта на дуге либо полусфере.

Для периметрии используют тест-объекты различной величины, яркости и цвета. Поскольку в норме чувствительность сетчатки от периферии к центру резко возрастает (в 2—3 раза на каждые 10°), периметрия с использованием объекта только одной величины позволяет дать довольно грубую качественную оценку поля зрения . Более точную его характеристику можно получить с помощью количественной (квантитативной) периметрии. Исследование проводят на сферопериметре двумя объектами разной величины; при этом с помощью светофильтров добиваются того, что количество отражаемого ими света становится одинаковым. В норме границы поля зрения . (изоптеры), полученные с помощью двух объектов, совпадают. Разница изоптер более чем на 5° указывает на нарушение пространственной суммации в поле зрения.

    Статическая периметрия, при которой в заранее обусловленных точках поля зрения . (50—100 и более) предъявляют неподвижные объекты переменной величины и яркости, не только повышает вероятность обнаружения дефектов поля зрения , но и позволяет судить о чувствительности сетчатки в различных отделах поля зрения. Использование компьютерной периметрии (периметр «Peritest») увеличивает точность исследования и сокращает его время.

    В норме наиболее широкие границы поля зрения получают при периметрии с использованием белого тест-объекта, более узкие границы — при использовании тест-объекта синего цвета, еще более узкие — при использовании красного тест-объекта, наиболее узкие границы поля зрения . — при исследовании с помощью зеленого тест-объекта .

32. Методы исследования цветоощущения.

С этой целью применяют две группы методов — пигментные с использованием цветных (пигментных) таблиц и различных тест-объектов, например кусочков картона разного цвета, и спектральные (с помощью аномалоскопов). Принцип исследования по таблицам основан на различении среди фоновых кружочков одного цвета цифр или фигур, составленных из кружков той же яркости, но другого цвета. Лица с расстройством цветового зрения , различающие в отличие от трихроматов, объекты только по яркости, не могут определить предъявляемые им фигурные или цифровые изображения. Из цветных таблиц наибольшее распространение получили полихроматические таблицы Рабкина, основная группа которых предназначена для дифференциальной диагностики форм и степени врожденных расстройств цветового зрения и отличия их от приобретенных. Существует также контрольная группа таблиц — для уточнения диагноза в сложных случаях.

    При выявлении нарушений цветового зрения используют также стооттеночный тест Фарнсуорта — Мензелла, основанный на плохом различении цвета протанопами, дейтеранопами и тританопами в определенных участках цветового круга. От испытуемого требуется расположить в порядке оттенков ряд кусочков картона разного цвета в виде цветового круга; при нарушении цветового зрения кусочки картона располагаются неправильно, т.е. не в том порядке, в каком они должны следовать друг за другом. Тест обладает высокой чувствительностью и дает информацию о типе нарушения цветового зрения. Используется также упрощенный тест, в котором используют всего 15 цветных тест-объектов.

    Более тонким методом диагностики расстройств цветового зрения является аномалоскопия — исследование с помощью специального прибора аномалоскопа. Принцип работы прибора основан на трехкомпонентности цветового зрения.Сущность метода заключается в уравнении цвета двухцветных тестовых полей, из которых одно освещается монохроматическим желтым цветом, а второе, освещаемое красным и зеленым, может менять цвет от чисто-красного до чисто-зеленого. Обследуемый должен подобрать путем оптического смешения красного и зеленого желтый цвет, соответствующий контрольному (уравнение Релея). Человек с нормальным цветовым зрением правильно подбирает цветовую пару смешением красного и зеленого. Человек с нарушением цветовым зрением с этой задачей не справляется. Метод аномалоскопии позволяет определить порог цветового зрения раздельно для красного, зеленого, синего цвета, выявить нарушения цветового зрения , диагностировать цветоаномалии. Степень нарушения цветоощущения выражается коэффициентом аномальности, который показывает соотношения зеленого и красного цветов при уравнении контрольного поля прибора с тестовым. У нормальных трихроматов коэффициент аномальности колеблется от 0,7 до 1,3, при протаномалии он меньше 0,7, при дейтераномалии — больше 1,3.

33. Методы исследования светоощущения.

Абсолютную световую чувствительность определяют с помощью адаптометров Нагеля, Белостоцкого — Гофмана в процессе темновой адаптации в течение 50—60 мин, предъявляя каждые 5 мин контрольные объекты с различным уровнем освещенности. Результаты исследования вычерчивают в виде графика , на котором по оси абсцисс откладывают время исследования, а по оси ординат –оптическую плотность светофильтров, регулирующих освещенность увиденного в данном исследовании объекта. Эта величина и характеризует светочувствительность : чем плотнее светофильтры , тем ниже освещенность объекта и тем выше светочувствительность . Для ускоренного исследования сумеречного зрения и темновой адаптации применяют прибор Кравкова — Вишневского, принцип действия которого основан на использовании феномена Пуркинье. В условиях пониженной освещенности пациенту предлагают рассматривать объекты четырех цветов — желтого, красного, зеленого и голубого. В норме через 30—40 с становится различимым желтый квадрат, потом голубой. При нарушении светоощущения на месте желтого квадрата пациент начинает различать светлое пятно через 50—60 с, голубой квадрат не выявляется. За рубежом получили распространение адаптометры Хартингера, никтоматы. Статическая периметрия : в заранее выбранных точках поля зрения (50-100 и более) предъявляют неподвижные объекты переменной величины и яркости. Это не только повышает вероятность обнаружения дефектов поля зрения, но и позволяет судить об абсолютной и различительной световой чувствительности в различных участках сетчатки.

34. Преимущества и недостатки периметрии.

Основным достоинством периметрии является проекция поля зрения не на плоскость , а на вогнутую сферическую поверхность , концентричную сетчатке. Благодаря этому исключается искажение границ поля зрения .Перемещение объектов на определенное число градусов по дуге даст равные отрезки , а на плоскости их величина неравномерно увеличивается от центра к периферии .

Периметрия одним объектом позволяет дать только качественную оценку периферического зрения , довольно грубо отделяя видимые участки от невидимых. Боле точную характеристику поля зрения можно получить с помощью количественной (квантитативной) периметрии. Метод позволяет улавливать патологические изменения поля зрения на ранних стадиях заболевания, когда обычная периметрия не выявляет отклонений от нормы. Статическая периметрия : в заранее выбранных точках поля зрения (50-100 и более) предъявляют неподвижные объекты переменной величины и яркости. Это не только повышает вероятность обнаружения дефектов поля зрения, но и позволяет судить об абсолютной и различительной световой чувствительности в различных участках сетчатки. Автоматическая периметрия позволяет избежать кропотливой работы и случайных результатов.
35. Картина нормального глазного дна.

Глазное дно при офтальмологическом исследовании с обычным источником света имеет красный цвет. Интенсивность окраски зависит в основном от количества ретинального (в сетчатке) и хориоидального (в сосудистой оболочке) пигмента. На красном фоне глазного дна выделяются диск зрительного нерва, желтое пятно и сосуды сетчатки. Диск зрительного нерва располагается кнутри от центральной части сетчатки и имеет вид четко очерченного бледно-розового круга или овала диаметром около 1,5 мм. В самом центре диска в месте выхода центральных сосудов почти всегда отмечается углубление — так называемая сосудистая воронка; в височной половине диска иногда имеется чашеобразное углубление (физиологическая экскавация), которое в отличие от патологического углубления занимает лишь часть диска.

    Из центра диска зрительного нерва или немного кнутри от него выходит центральная артерия сетчатки (ветвь глазной артерии) в сопровождении расположенной кнаружи от нее одноименной вены. Артерия и вена делятся на две главные ветви, идущие вверх и вниз. Нередко разделение центральной артерии сетчатки происходит еще в стволе зрительного нерва за глазным яблоком, в этом случае верхняя и нижняя ветви ее проявляются на глазном дне раздельно. Верхние и нижние артерии и вены на диске или недалеко от него разветвляются на более мелкие. Артериальные и венозные сосуды сетчатки отличаются друг от друга: артериальные сосуды — более тонкие (соотношение калибра артериол и венул сетчатки равно 2:3) и более светлые, менее извитые. Чрезвычайно важное значение при осмотре глазного дна имеет область желтого пятна с центральной ямкой, расположенного кнаружи от височной границы диска зрительного нерва. Желтое пятно выделяется более темной окраской и имеет форму горизонтально расположенного овала. В центре желтого пятна просматривается темное круглое пятнышко — ямочка.

36. Методы исследования хрусталика и стекловидного тела.

Биомикроскопия глаза — метод визуального исследования оптических сред и тканей глаза, основанный на создании резкого контраста между освещенными и неосвещенными участками; позволяет осмотреть конъюнктиву, роговицу, радужку, переднюю камеру глаза, хрусталик, стекловидное тело, а также центральные отделы глазного дна (биомикроофтальмоскопия).

Биомикроскопию глаза осуществляют при помощи щелевой лампы (стационарной или ручной), основными частями которой являются осветитель и увеличительное устройство (бинокулярный стереоскопический микроскоп или лупа). На пути светового пучка находится щелевая диафрагма, позволяющая получить вертикальную и горизонтальную осветительные щели. С помощью измерительного окуляра стереоскопического микроскопа определяют глубину передней камеры глаза; дополнительная рассеивающая линза силой около 60 дптр, нейтрализующая положительное действие оптической системы глаза, дает возможность исследовать глазное дно.

    Исследование проводят в темной комнате, чтобы создать резкий контраст между затемненными и освещенными лампой участками глазного яблока. Максимально раскрытая щель диафрагмы обеспечивает диффузное освещение, позволяющее осмотреть все участки переднего отдела глаза, узкая щель — светящийся оптический «разрез». При совмещении пучка света с наблюдаемым участком глаза получается прямое фокальное освещение, наиболее часто применяемое при биомикроскопии глаза и позволяющее установить локализацию патологического процесса    При фокусировании света на хрусталике определяется его оптический срез в форме двояковыпуклого прозрачного тела. В срезе четко выделяются поверхности хрусталика, а также сероватые овальные полосы — так называемые зоны раздела, обусловленные различной плотностью вещества хрусталика. Изучение оптического среза хрусталика позволяет установить точную локализацию начинающегося помутнения его вещества, оценить состояние капсулы.

При биомикроскопии стекловидного тела в нем выявляются не различимые при других методах исследования фибриллярные структуры (остов стекловидного тела), изменения которых свидетельствуют о воспалительных или дистрофических процессах в глазном яблоке.

При биомикроскопии глаза применяют и другие виды освещения. Непрямое освещение (исследование в темном поле), при котором наблюдаемый участок освещается лучами, отраженными от более глубоких тканей глаза, позволяет хорошо рассмотреть сосуды, участки атрофии и разрывы тканей. Для осмотра прозрачных сред используют освещение проходящим светом и метод зеркального поля, что способствует выявлению незначительных неровностей роговицы, детальному исследованию поверхности капсулы хрусталика и др. Осмотр глазного дна производят также в лучах спектра (биомикрохромоофтальмоскопия).

Метод исследования проходящим светом.

Исследование проводят в темной комнате. Источник находится слева и сзади от больного на его уровне глаз. Врач, сидящий напротив больного, держит в правой руке офтальмоскоп, приставляет его к своему правому, глазу и зеркальцем направляет пучок света в глаз обследуемого , у которого лучше предварительно расширить зрачок. Пучок света, пройдя через прозрачные среды глаза, отразится от глазного дна. Часть отраженных лучей через отверстие офтальмоскопа попадает в глаз врача; зрачок при этом «загорается» красным светом. Свечение зрачка основано на законе сопряженных фокусов. Красный цвет обусловливают сосудистая оболочка, наполненная кровью, и пигментный слой сетчатки.

Если на пути светового пучка, отраженного от глаза обследуемого встретятся помутнения, то в зависимости от формы и плотности они задержат часть лучей и на красном фоне зрачка появятся либо темные пятна, либо полосы и диффузные затемнения . При отсутствии помутнений в роговице и передней камере, что легко установить при боковом освещении, возникающие тени будут обуславливаться помутнениями хрусталика или

стекловидного тела.

Помутнёния в хрусталике неподвижны, при движении глазного яблока они смещаются вместе с ним. Помутнения стекловидного тела нефиксированны, при движении глазного яблока (даже незначительном) они плывут на фоне красного свечения зрачка, то появляясь, то исчезая.

Исследование проходящим светом позволяет определить глубину помутнения в глазу по параллаксу, т. е. кажущемся смещению помутнений относительно какой-нибудь точки. В глазу удобно ориентироваться по центральной зоне зрачка. Если помутнение расположено впереди плоскости зрачка (например в роговице ) ,то при смещении глаза помутнение сместится в ту же сторону При .локализации помутнения в передних слоях хрусталика оно при смещении глаза остается неподвижным, так как находится в одной плоскости с плоскостью зрачка. Помутнения, локализованные в глубоких отделах хрусталика и в стекловидном теле , при движении глаза будут смещаться в противоположную сторону. Чем глубже расположено помутнение, тем больше будет амплитуда этих смещений.

37. Преимущества и недостатки прямой офтальмоскопии.

При офтальмоскопии в прямом виде получается увеличение изображения примерно в 16-20 раз . Офтальмоскопия в прямом виде помогает детализировать изменения.

38. Преимущества и недостатки обратной офтальмоскопии.

Офтальмоскопия в обратном виде) — офтальмоскопия, осуществляемая с помощью офтальмоскопа и собирательной лупы силой в 20, 13 или 10 дптр, дающих обратное увеличенное (в среднем соответственно в 3, 5 или 6 раз) изображение глазного дна; применяется для общего осмотра глазного дна.

39. Возможность метода исследования глаз в фокальном освещении.

Метод исследования глаз в фокальном освещении позволяет обнаружить более тонкие изменения склеры, роговицы, передней камеры , радужки.

Для осмотра необходимо иметь настольную лампу и лупу. Лампу устанавливают слева и спереди от больного на расстоянии 50-60см на уровне его глаз. Врач усаживается напротив больного, отодвигая свои колени вправо, а колени больного влево. Голову больного слегка поворачивают в сторону источника света. Лупу держат правой рукой на расстоянии 7—8 см от глаза перпендикулярно лучам, идущим от источника света. Таким образом , лучи фокусируются лупой на том участке оболочек глаза, который подлежит осмотру. Благодаря контрасту между ярко освещенным небольшим участком и неосвещенными соседними частями глаза изменения легче улавливаются. При исследовании склеры обращают внимание на ее цвет , ход и кровенаполнение сосудов.

В норме склера белого цвета. Краевая петлистая сосудистая сеть не видна. Видны

Лишь единичные сосуды коньюктивы, которые придают склере блеск.

При осмотре роговицы устанавливают ее размер , форму, прозрачность , сферичность, зеркальность. Несмотря на прозрачность , нормальная роговица при боковом освещении выглядит дымчатой. Поверхность ее гладкая, блестящая. В верхней части роговицы лимб расширен.

Сквозь роговицу отчетливо видна передняя камера глаза. Метод бокового освещения выявляют ее глубину, содержимое. Глубина камеры определяется расстоянием между рефлексами на роговице и на радужке. Определять глубину камеры удобнее при осмотре сбоку. Средняя ее глубина 3-3,5мм. Влага в норме настолько прозрачная, что передняя камера представляется пустой.

При исследовании радужки отмечают ее цвет, рисунок, наличие или отсутствие пигментных включений, состояние пигментной бахромки, ширину и подвижность зрачка. Цвет радужки бывает различным — от светло-голубого до темно-коричневого, что зависит от количества пигмента в ней. Трабекулы и лакуны придают радужке ажурный вид. Ход трабекул радиарный. Глубина и ширина лакун индивидуальны. В радужке отчетливо выделяются зрачковая и ресничная зоны.. В ресничной зоне можно разглядеть фракционные борозды, идущие концентрично лимбу. По зрачковому краю имеется коричневая кайма — часть пигментного листка радужки, заходящая на ее переднюю поверхность.

Очень важно определить форму, ширину и реакцию зрачков на свет.

Хрусталик при боковом освещении виден лишь при его помутнении.
40. Локализация помутнений в оптических средах глаза.

Хрусталик, стекловидное тело.

41. Возможности метода исследования глаза в проходящем свете.

Метод исследования проходящим светом.

Исследование проводят в темной комнате. Источник находится слева и сзади от больного на его уровне глаз. Врач, сидящий напротив больного, держит в правой руке офтальмоскоп, приставляет его к своему правому, глазу и зеркальцем направляет пучок света в глаз обследуемого , у которого лучше предварительно расширить зрачок. Пучок света, пройдя через прозрачные среды глаза, отразится от глазного дна. Часть отраженных лучей через отверстие офтальмоскопа попадает в глаз врача; зрачок при этом «загорается» красным светом. Свечение зрачка основано на законе сопряженных фокусов. Красный цвет обусловливают сосудистая оболочка, наполненная кровью, и пигментный слой сетчатки.

Если на пути светового пучка, отраженного от глаза обследуемого встретятся помутнения, то в зависимости от формы и плотности они задержат часть лучей и на красном фоне зрачка появятся либо темные пятна, либо полосы и диффузные затемнения . При отсутствии помутнений в роговице и передней камере, что легко установить при боковом освещении, возникающие тени будут обуславливаться помутнениями хрусталика или

стекловидного тела.

Помутнёния в хрусталике неподвижны, при движении глазного яблока они смещаются вместе с ним. Помутнения стекловидного тела нефиксированны, при движении глазного яблока (даже незначительном) они плывут на фоне красного свечения зрачка, то появляясь, то исчезая.

Исследование проходящим светом позволяет определить глубину помутнения в глазу по параллаксу, т. е. кажущемся смещению помутнений относительно какой-нибудь точки. В глазу удобно ориентироваться по центральной зоне зрачка. Если помутнение расположено впереди плоскости зрачка (например в роговице ) ,то при смещении глаза помутнение сместится в ту же сторону При .локализации помутнения в передних слоях хрусталика оно при смещении глаза остается неподвижным, так как находится в одной плоскости с плоскостью зрачка. Помутнения, локализованные в глубоких отделах хрусталика и в стекловидном теле , при движении глаза будут смещаться в противоположную сторону. Чем глубже расположено помутнение, тем больше будет амплитуда этих смещений.

42. Возможности биомикроскопии.

Биомикроскопия глаза — метод визуального исследования оптических сред и тканей глаза, основанный на создании резкого контраста между освещенными и неосвещенными участками; позволяет осмотреть конъюнктиву, роговицу, радужку, переднюю камеру глаза, хрусталик, стекловидное тело, а также центральные отделы глазного дна (биомикроофтальмоскопия).

    Благодаря биомикроскопии глаза возможна ранняя диагностика трахомы, глаукомы, катаракты и других заболеваний глаза. Биомикроскопия глаза позволяет определить прободное ранение глазного яблока, обнаружить не выявляемые при рентгенологическом исследовании мельчайшие инородные тела в конъюнктиве, роговице, передней камере глаза и хрусталике (частицы стекла, алюминия, угля, ресницы).

    Биомикроскопию глаза осуществляют при помощи щелевой лампы (стационарной или ручной), основными частями которой являются осветитель и увеличительное устройство (бинокулярный стереоскопический микроскоп или лупа). На пути светового пучка находится щелевая диафрагма, позволяющая получить вертикальную и горизонтальную осветительные щели. С помощью измерительного окуляра стереоскопического микроскопа определяют глубину передней камеры глаза; дополнительная рассеивающая линза силой около 60 дптр, нейтрализующая положительное действие оптической системы глаза, дает возможность исследовать глазное дно.

    Исследование проводят в темной комнате, чтобы создать резкий контраст между затемненными и освещенными лампой участками глазного яблока. Максимально раскрытая щель диафрагмы обеспечивает диффузное освещение, позволяющее осмотреть все участки переднего отдела глаза, узкая щель — светящийся оптический «разрез». При совмещении пучка света с наблюдаемым участком глаза получается прямое фокальное освещение, наиболее часто применяемое при биомикроскопии глаза и позволяющее установить локализацию патологического процесса. При фокусировании света на роговице получают оптический срез, имеющий форму выпукло-вогнутой призмы, на котором хорошо выделяются передняя и задняя поверхности, собственно ткань роговицы. При выявлении в роговице воспаления или помутнения биомикроскопия глаза позволяет определить расположение патологического очага, глубину поражения ткани; при наличии инородного тела — установить, находится ли оно в ткани роговицы или частично проникает в полость глаза, что позволяет врачу правильно выбрать лечебную тактику.

    При фокусировании света на хрусталике определяется его оптический срез в форме двояковыпуклого прозрачного тела. В срезе четко выделяются поверхности хрусталика, а также сероватые овальные полосы — так называемые зоны раздела, обусловленные различной плотностью вещества хрусталика. Изучение оптического среза хрусталика позволяет установить точную локализацию начинающегося помутнения его вещества, оценить состояние капсулы.

    При биомикроскопии стекловидного тела в нем выявляются не различимые при других методах исследования фибриллярные структуры (остов стекловидного тела), изменения которых свидетельствуют о воспалительных или дистрофических процессах в глазном яблоке. Фокусирование света на глазном дне дает возможность исследовать в оптическом срезе сетчатку и диск зрительного нерва (размер и глубина экскавации), что имеет значение при диагностике глаукомы, для раннего выявления неврита зрительного нерва, застойного соска, центрально расположенных разрывов сетчатки.

    При биомикроскопии глаза применяют и другие виды освещения. Непрямое освещение (исследование в темном поле), при котором наблюдаемый участок освещается лучами, отраженными от более глубоких тканей глаза, позволяет хорошо рассмотреть сосуды, участки атрофии и разрывы тканей. Для осмотра прозрачных сред используют освещение проходящим светом и метод зеркального поля, что способствует выявлению незначительных неровностей роговицы, детальному исследованию поверхности капсулы хрусталика и др. Осмотр глазного дна производят также в лучах спектра (биомикрохромоофтальмоскопия). Менее информативна биомикроскопия полупрозрачных и непрозрачных тканей глазного яблока (например, конъюнктивы, радужки).

43. Оптическая сила преломляющего аппарата глаза.

Оптическая сила преломляющего аппарата глаза= оптическая сила роговицы(40 дптр) + оптическая сила хрусталика(18 дптр)=58дптр.

44. Оптическая сила роговицы.

Оптическая сила роговицы=40 дптр.

45. Оптическая сила хрусталика.

Оптическая сила хрусталика=18 дптр.

46. Чем характеризуется физическая рефракция глаза.

Рефракция глаза— преломляющая сила оптической системы глаза, выраженная в диоптриях.

Рефракция глаза как физическое явление определяется радиусом кривизны каждой преломляющей среды глаза, показателями преломления сред и расстоянием между их поверхностями, т.е. обусловлена анатомическими особенностями глаза.

Физическая рефракция глаза варьирует в широких пределах- от 52 до 71 дптр, составляя в среднем 60 дптр. Она формируется в период роста глаза и в дальнейшем не меняется. Физическая рефракция характеризует преломляющую силу оптической системы глаза.

47. Чем характеризуется клиническая рефракция глаза.

В клинике имеет значение не абсолютная сила оптического (светопреломляющего) аппарата глаза, а ее соотношение с длиной переднезадней оси глаза, т.е. положение заднего главного фокуса (точка пересечения лучей, проходящих через оптическую систему глаза, параллельно его оптической оси) по отношению к сетчатке — клиническая рефракция.

    Различают три вида клинической рефракции глаза. Рефракцию, при которой задний главный фокус совпадает с сетчаткой, называют соразмерной и обозначают как эмметропия; при расположении заднего главного фокуса впереди сетчатки говорят о миопии, или близорукости; рефракцию, характеризующуюся расположением заднего главного фокуса позади сетчатки, называют гиперметропией, или дальнозоркостью. Последние два вида рефракция глаза являются несоразмерными и называются аметропиями. Часто наблюдается анизометропия — разница в рефракции обоих глаз, в большинстве случаев не превышающая 0,5 дптр.

При любом виде клинической рефракции глаз имеет всегда только одну наиболее отдаленную точку в пространстве, к которой он установлен (лучи, исходящие из этой точки, фокусируются на сетчатке). Эту точку называют дальнейшей точкой ясного зрения. Для эмметропического глаза она лежит в бесконечности, при близорукости на каком-либо конечном расстоянии впереди глаза (тем ближе, чем выше степень близорукости). Для дальнозоркого глаза дальнейшая точка ясного зрения является мнимой, т.к. в этом случае на сетчатке могут фокусироваться только лучи, уже имеющие некоторую степень схождения, а таких лучей в естественных условиях не существует. Т. о., положение дальнейшей точки ясного зрения определяет вид клинической рефракции и степень аметропии. Степень аметропии измеряется силой линзы, которая ее компенсирует, и выражается в диоптриях. Близорукость обозначается цифрой со знаком «минус» дальнозоркость — со знаком «плюс». Аметропию от ±0,25 до ±3,0 дптр относят к слабой, от ±3,25 до ±6,0 дптр — к средней и свыше 6,0 дптр — к высокой. Преломляющая способность глаза может увеличиваться за счет аккомодации. В зависимости от этого различают статическую рефракцию глаза, т.е. рефакцию в состоянии покоя аккомодации, и динамическую — рефракцию при включении механизмов аккомодации.

В зависимости от формы оптического аппарата глаза различают сферическую рефракцию глаза, когда преломление лучей в глазу одинаково во всех меридианах, и астигматическую, когда в одном и том же глазу имеется сочетание различных рефракций, т.е. преломление лучей неодинаково по различным меридианам. В астигматическом глазу различают два главных сечения меридиана, которые располагаются под прямым углом: в одном из них рефракция глаза наибольшая, в другом — наименьшая. Разницу рефракции в этих меридианах называют степенью астигматизма. Небольшие степени астигматизма (до 0,5 дптр) встречаются довольно часто, они почти не ухудшают зрения, поэтому такой астигматизм называют физиологическим.
48. Дальнейшая точка зрения при миопии, гиперметропии, эмметропии.

Дальнейшая точка зрения при миопии располагается на каком-либо конечном расстоянии впереди глаза (тем ближе, чем выше степень близорукости), при гиперметропии дальнейшая точка ясного зрения является мнимой, т.к. в этом случае на сетчатке могут фокусироваться только лучи, уже имеющие некоторую степень схождения, а таких лучей в естественных условиях не существует, при эмметропии дальнейшая точка зрения располагается в бесконечности.
49. Ход параллельных лучей при миопии, гиперметропии, эмметропии.

Ход параллельных лучей при миопии.

Параллельные лучи света, попадающие в глаз, после преломления сходятся в фокусе не на сетчатке, а впереди сетчатки.

Ход параллельных лучей при гиперметропии.

Параллельные лучи света, попадающие в глаз, после преломления сходятся в фокусе не на сетчатке, а позади сетчатки.

Ход параллельных лучей при эмметропии.

Параллельные лучи света, попадающие в глаз, после преломления сходятся в фокусе на сетчатке.
50. Какие лучи сходятся в сетчатке при миопии, гиперметропии, эмметропии.

Параллельные лучи света сходятся в сетчатке при миопии, гиперметропии, эмметропии.
51. Коррекция миопии, гиперметропии.

 Для улучшения зрения при близорукости слабой и средней степени назначают линзы, полностью или почти полностью корригирующие близорукость. Для работы на близком расстоянии от глаз, особенно при ослаблении аккомодации, показаны линзы на 1,0—2,0 дптр слабее, чем для дали; при близорукости 1,0—2,0 дптр очками можно пользоваться непостоянно, только для дали.

    При высоких степенях близорукости полная коррекция нередко плохо переносится. В таких случаях назначают постоянную коррекцию, величина которой для дали и для работы вблизи определяется переносимостью. Если при высоких степенях близорукости очки существенно не улучшают зрения, решается вопрос о контактной коррекции. При астенопии целесообразно добавлять к сферическим линзам призматические элементы. Для воздействия на ослабленную аккомодацию применяют специальные тренировочные упражнения, способствующие стабилизации близорукости.

Коррекция миопии осуществляется с помощью рассеивающих линз. При назначении очков за основу принимается степень миопии , которую характеризует слабое(минусовое) стекло , дающее наилучшую остроту зрения. Во избежание назначение минусовых стекол при ложной миопии рефракция в детском и юношеском возрасте определяется в состоянии медикаментозной циклоплегии.

При низкой миопии , как правило, рекомендуется полная коррекция , равная степени миопии. Носить такие очки можно не постоянно , а только в случае необходимости. При миопии средней и особенно и особенно высокой степени полная коррекция при работе на близком расстоянии вызывает перегрузку ослабленной ресничной мышцы, что проявляется зрительным дискомфортом при чтении . В таких случаях , особенно в детском возрасте, назначают две пары очков (для дали- полная коррекция миопии и для работы на близком расстоянии с линзами на 1-3 дптр слабее) или бифокальные очки для постоянного ношения , у которых верхняя часть стекла служит для зрения вдаль, а нижняя – вблизи , либо очки для постоянного ношения с неполной коррекцией , дающей бинокулярно достаточно хорошую остроту зрения (0,6-0,7).

 При выраженной дальнозоркости или утомлении глаз применяют очки с положительными (convex) линзами, повышающие рефракцию дальнозоркого глаза до нормы, которые с возрастом по мере перехода скрытой дальнозоркости в явную приходится усиливать.

Показанием к назначению очков является наличие астенопических жалоб или снижение остроты зрения хотя бы одного глаза. В этих случаях назначают постоянную полную коррекцию , используя самое сильное собирательное (плюсовое) стекло , дающее хорошее зрение. Детям 2-4 лет при гиперметропии более 3 дптр назначают постоянную коррекцию на 1 дптр меньше степени гиперметропии , определенной объективным методом после циклопегии. Это необходимо для профилактики нарушений бинокулярного зрения и особенно для исправления косоглазия.

52. Виды астигматизма.

Астигматизм:

1)прямой(если преломление в вертикальном меридиане бывает сильнее,

чем в горизонтальном);

2)обратный(если горизонтальный меридиан преломляет сильнее вертикального);

3)правильный(характеризуется одинаковой преломляющей силой на протяжении всего меридиана):

простой (сочетание эмметропии в одном меридиане с аномалией рефракции в другом): гиперметропический , миопический;

сложный (в обоих меридианах одна и та же рефракция , но разной степени):гиперметропический , миопический;

смешанный(комбинация миопии и гиперметропии в разных

меридианах глаза);

4)неправильный(характеризуется локальными изменениями преломляющей силы на разных отрезках одного меридиана)

Небольшие степени астигматизма (до 0,5 дптр) встречаются довольно часто, они почти не ухудшают зрения, поэтому такой астигматизм называют физиологическим.

53. Диагностика миопии, гиперметропии, эмметропии.
Диагностика близорукости основывается на субъективных показаниях исследуемого в процессе определения остроты зрения с применением корригирующих близорукость линз
1   2   3   4   5   6   7   8   9


написать администратору сайта