Главная страница
Навигация по странице:

  • 11.Он как 10вопрос

  • 13.Элементы симметрии кристаллических структур.230 пространственных групп симметрии.

  • Операции и элементы симметрии

  • Элементы симметрии кристаллических многогранников

  • 14.Изоморфизм. Разновидности их и условия проявления. Твердые растворы (замещение внедрение вычитание )

  • Типы изоморфных растворов Растворы замещения

  • Изоморфизм с заполнением пространства

  • Термодинамика изоморфизма

  • Законы изоморфизма Закон Гольдшмидта. Правило диагонального изоморфизма, ограничение по электроотрицательности

  • Упорядоченность твердых растворов

  • 15.Полиморфизм. Структурные типы полиморфных превращений. Фазовые переходы 1 и 2 рода.

  • Кристалка отв. Кристаллография


    Скачать 474.46 Kb.
    НазваниеКристаллография
    АнкорКристалка отв .docx
    Дата05.02.2018
    Размер474.46 Kb.
    Формат файлаdocx
    Имя файлаКристалка отв .docx
    ТипДокументы
    #15228
    страница2 из 5
    1   2   3   4   5

    Ионная связь

    В узлах кристаллической решётки помещаются положительно и отрицательно заряженные ионы.

    Силы взаимодействия между узлами являются в основном электростатическими (кулоновскими). Связь между такими частицами называется гетерополярной или ионной.

    Кристаллы с ионной связью при низких температурах являются диэлектриками. При температурах близких к температуре плавления они становятся проводниками электричества. Примером кристаллов с ионной решёткой являются кристаллы каменной соли (NaCl).

    Металлическая связь

    Особый тип связи, характерный для металлов и металлидов. Во всех узлах кристаллической решётки расположены положительные ионы металла. Между ними беспорядочно, подобно молекулам газа, движутся валентные электроны, отщепившиеся от атомов при образовании ионов. Эти электроны играют роль цемента, удерживая вместе положительные ионы; в противном случае решётка распалась бы под действием сил отталкивания между ионами. Вместе с тем и электроны удерживаются ионами в пределах кристаллической решётки и не могут её покинуть. Силы связи не локализованы и не направлены. Поэтому в большинстве случаев проявляются высокие координационные числа (например, 12 или 8). Свободно движущиеся электроны обусловливают высокую электро- и теплопроводность.

    Большинство металлов имеет кристаллические решётки одного из трёх типов: кубическую объёмно-центрированную, кубическую гранецентрированную и, так называемую, плотную гексагональную.

    Молекулярная связь

    В узлах кристаллической решётки помещаются определённым образом ориентированные молекулы. Силы связи между молекулами в кристалле имеют ту же природу, что и силы притяжения между молекулами, приводящие к отклонению газов от идеальности. По этой причине их называют ван-дер-ваальсовскими силами.

    Для кристаллов с молекулярными связями характерны низкие температуры плавления и высокая сжимаемость.

    11.Он как 10вопрос

    12.Гомо-гетеродесмические структуры. классификация кристаллических структур по типу химической связи и характеру координации.

    13.Элементы симметрии кристаллических структур.230 пространственных групп симметрии.

    СИММЕТРИ́Я КРИСТА́ЛЛОВ, закономерность атомного строения, внешней формы и физических свойств кристаллов, заключающаяся в том, что кристалл может быть совмещен с самим собой путем поворотов, отражений, параллельных переносов (трансляций) и др. преобразований симметрии, а также комбинаций этих преобразований. Симметрия свойств кристалла обусловлена симметрией его строения.

    Операции и элементы симметрии

    Отражения и вращения, приводящие многогранник в совмещение с самим собой, называются преобразованиями симметрии или симметричными операциями.

    Воображаемые плоскости, линии и точки, с помощью которых осуществляются эти отражения и вращения, называются элементами симметрии.

    Для обозначения симметричных преобразований и соответствующих им элементов симметрии используют две системы обозначения — международную, принятую интернациональным союзом кристаллографов, и символику, основанную на формулах симметрии.

    Элементы симметрии кристаллических многогранников

    Плоскость симметрии — плоскость, которая делит фигуру на две части, расположенные друг относительно друга, как предмет и его зеркальное отражение. Обозначение: международное — m, по формуле симметрии — Р.

    Пример: в кубе 3 взаимно перпендикулярные плоскости симметрии делят пополам противоположные ребра куба как координатные плоскости прямоугольной системы координат, а шесть плоскостей симметрии проходят по диагоналям граней куба. Все девять плоскостей симметрии куба пересекаются в одной точке — в центре куба. Плоскости симметрии располагаются в симметричной фигуре строго определенно, и все пересекаются друг с другом.

    Поворотная ось симметрии —прямая линия, при повороте вокруг которой на определенный угол фигура совмещается сама с собой. Обозначение: международное — n, по формуле симметрии — Ln. Соответственно двойная ось обозначается 2 или L2, тройная — 3 или L3, четверная — 4 или L4; шестерная — 6 или L6. Порядок оси симметрии n показывает, сколько раз фигура совместится сама с собой при полном обороте вокруг этой оси. У куба есть три оси 4-го порядка, которые проходят через центры противоположных граней, 4 оси 3-го порядка, являющиеся пространственными диагоналями куба и 6 осей 2-го порядка, проходящих через середины пар противоположных ребер. Все оси симметрии куба пересекаются в одной точке в центре куба.

    Центр симметрии (центр инверсии, центр обратного равенства) — особая точка внутри фигуры, характеризующаяся тем, что любая прямая, проведенная через центр симметрии, встречает одинаковые (соответственные) точки фигуры по обе стороны от центра на равных расстояниях. Симметричное преобразование в центре симметрии — это зеркальное отражение в точке. Обозначение: международное — 1, по формуле симметрии — С. Когда мы отражаем куб в плоскостях симметрии, зеркально отражаются все его точки, кроме находящихся на самой плоскости симметрии. Когда куб поворачивается вокруг разных осей симметрии, поворачиваются все точки, кроме точек, лежащих на самой оси симметрии. При отражении в центре симметрии остается одна точка, не отражающаяся, не смещающаяся, — сам центр. Отражение в плоскости, поворот вокруг оси симметрии, зеркальное отражение в центре симметрии представляют собой конечные или точечные симметричные преобразования. При этих преобразованиях фигура не перемещается как целое, и хотя бы одна ее точка остается на месте.

    Полярным называется направление, концы которого геометрически и физически не эквивалентны, их нельзя совместить никакими преобразованиями симметрии.

    Инверсионная ось симметрии — совместное действие оси вращения и одновременного отражения (инверсии) в центре симметрии.

    Обозначение: международное — n, по формуле симметрии — Ln=Lni.

    Соответственно, тройная — 3 или L3i, четверная — 4 или L4i; шестерная — 6 или L6i.

    Внешняя, видимая симметрия кристаллов исчерпывающе описывается приведенными выше элементами симметрии и их сочетаниями.

    Плоскости симметрии, оси симметрии простые и инверсионные, центр симметрии обнаруживаются в кристаллах в различных сочетаниях.

    Формула симметрии

    Формула симметрии состоит из записанных подряд всех элементов симметрии данного объекта. Например, обычная поваренная соль (хлористый натрий) кристаллизуется в форме кубов, алмаз, квасцы — в форме октаэдров. Полный набор элементов симметрии у этих разных многогранников один и тот же: девять плоскостей, три оси четвертого порядка, четыре оси третьего порядка, шесть осей второго порядка и центр симметрии. В формуле симметрии на первом месте принято писать оси симметрии от высших к низшим, на втором плоскости симметрии, затем центр. Формула симметрии куба 3L44L36L29PC.

    Классом или видом симметрии какого-либо объекта называют полную совокупность операций симметрии этого объекта. Все многообразие симметрии кристаллических многогранников и их физических свойств описывается 32 классами симметрии.

    Категории симметрии

    По симметрии и числу единичных направлений кристаллы делятся на три категории: высшую, среднюю и низшую.

    Кристаллы высшей категории не имеют единичных направлений, У них обязательно есть несколько осей порядка выше , чем 2, в частности четыре оси 3, расположенные как пространственные диагонали куба. Это высокосимметричные кристаллы. Любому направлению в кристалле высшей категории соответствуют другие симметрично эквивалентные направления. Свойства кристаллов в направлениях симметрично эквивалентных должны быть одинаковыми, поэтому анизотропия свойств в кристаллах высшей категории выражена слабее всего. Многие физические свойства (электропроводность, теплопроводность, показатель преломления) в этих кристаллах изотропны как в аморфных веществах, а анизотропия других свойств (упругость, электрооптический эффект) гораздо слабее, чем у кристаллов других категорий. Внешняя форма кристаллов высшей категории, как правило, изометрична, т. е. развита примерно одинаково во все стороны, как куб, октаэдр, тетраэдр.

    Кристаллы средней категории имеют одно особое направление, а именно: одна ось симметрии 3, 4 или 6 , простая или инверсионная. Анизотропия физических свойств у этих кристаллов гораздо сильнее, чем у кристаллов высшей категории. Особенно заметно различие свойств вдоль и поперек главной оси симметрии. Характерные формы кристаллов средней категории — призмы, пирамиды и др.

    К низшей категории относятся кристаллы, у которых нет осей симметрии порядка выше чем 2, а единичных направлений несколько. Это наименее симметричные кристаллы с ярко выраженной анизотропией свойств.

    Три категории делятся на 7 сингоний. В сингонию объединяются те кристаллы, для которых одинакова симметрия элементарных ячеек и их структур и одинакова система координат.

    14.Изоморфизм. Разновидности их и условия проявления. Твердые растворы (замещение внедрение вычитание )

    Изоморфизмом в кристаллохимии называют два несколько разных явления:

    Изоструктурными называются вещества с одинаковой кристаллической структурой. Изоморфными — те изоструктурные вещества, которые состоят из химически схожих компонентов. Это близость структуры и формы кристаллов различного (но родственного) химического состава. В этом смысле изоструктурными можно назвать NaCl, MgO и FeN, а изоморфными MgO и FeO. Изоморфизм структур вместе с другими важнейшими категориями кристаллохимии: полиморфизмом, морфотропией и структурной гомологией является важнейшим свойством кристаллических решеток.

    С другой стороны, термином «изоморфизм» обозначается явление взаимозамещения атомов и иных структурных единиц в кристаллических фазах переменного состава. Такие вещества также называют изоморфными смесями или твердыми растворами. В этом смысле понятие изоморфизма употребляется гораздо чаще.

    Типы изоморфных растворов

    Растворы замещения — один из наиболее распространенных типов соединений переменного состава. Такие соединения имеют фазовые диаграммы следующего вида.

    Изоморфизм с заполнением пространства происходит, когда кроме замещающегося атома в позицию входят дополнительные атомы, располагающиеся в дополнительных позициях решетки.

    Растворы внедрения (твердые растворы второго рода) это растворы, в которых атомы примеси не замещают атомы минерала хозяина, а располагаются в промежутках между ними. Растворяющиеся атомы входят в промежутки между атомами матрицы, статистически заселяя новую не занятую ранее позицию. Иногда атомы матрицы называют узлами и тогда говорят, что примесь входит в междуузлия. Растворимость по типу внедрения обычно невелика — порядка нескольких процентов и лишь в редких случаях достигает 10 %. В растворах замещения необходимое условие — схожий характер связи с различных компонентах. В растворах внедрения тип связи может быть совершенно иным.

    Встречается в тех случаях, когда размеры атомов обоих компонентов значительно различаются. Он особенно характерен для систем металл — неметалл, причем размер атома неметалла значительно меньше, чем размер атома металла. Наименьшие атомы будут у следующих элементов: H (0,46), N (0,71), C (0,77). Они часто образуют с металлами твердые растворы второго рода, носящие названия гидридов, нитридов и карбидов. Многие из них являются тугоплавкими твердыми сплавами и широко применяются в промышленности.

    Классический пример раствора внедрения — аустенит. Это раствор углерода в γ-модификации железа. В качестве растворов внедрения можно рассматривать силикаты с полостями и каналами, в которые входит переменное количество различных ионов. Например в берилле в каналы могут входить ионы и вода.

    Другой замечательный пример раствора включения: образование гидратов некоторых металлов, в особенности палладия. Палладий может растворять огромное количество водорода, в несколько раз превышающее его объем. Водород отдает свой электрон металлу и он обобществляется. Лишенный электрона водород превращается в исключительно мелкий ион, который распределяется по межузлиям палладиевой решетки, не искажая её.

    Растворы вычитания — Это фазы переменного состава, в которых при наличии устойчивой решетки одного из компонентов, содержание другого компонента варьирует, так как он замещается вакансиями. Такие структуры называют дефектными или дефицитными.

    В качестве примера фазы вычитания можно привести пирротин, в котором наблюдается нестихиометричное соотношение железа и серы.

    Термодинамика изоморфизма

    Зависимость изоморфизма от термодинамических параметров: твердые растворы в зависимости от температуры и давления. Изоморфная емкость структуры: частичный и полный изоморфизм. Изоморфная емкость структуры. Причина ограниченности изоморфизма

    Современная термодинамика трактует способность соединений образовывать твердые растворы с общих позиций минимума свободной энергии.

    Судьба минерала определяется тем, выгодно ли энергетически его существование в виде чистых соединений, или же, напротив, выигрыш в свободной энергии обеспечивается его нахождением в форме твердого раствора. Конкретный выбор зависит от конкуренции двух основных факторов противоположной направленности: 1) затраты энергии на деформацию кристаллической структуры при нарушении ее идеальности в результате появления в регулярных позициях структуры атомов иного размера (безразлично — более крупных или более мелких) и/или иного заряда (валентности) и 2) выигрыша энергии за счет роста конфигурационной энтропии при увеличении беспорядка в системе [3].

    Конфигурационная энтропия связана с числом вариантов случайного размещения некоторой определенной доли «своих» и «чужих» атомов в одних и тех же позициях кристаллической структуры. Чем больше число таких вариантов, тем больше значение конфигурационной энтропии S. Она может быть рассчитана по известной формуле Больцмана s = klnw, где k — константа Больцмана, W — термодинамическая вероятность состояния системы. Для твердых растворов W — это просто число перестановок местами атомов разных сортов в заданных позициях структуры; W = 1 для чистого кристалла и всегда больше единицы для смешанного. Ясно, что число таких перестановок зависит от состава системы, в частности от числа разных типов атомов (два, три или более), причем увеличение числа компонентов ведет к росту значений конфигурационной энтропии. Существенно также, что даже появление небольшой доли примеси ведет сразу к большому росту энтропии смешения. Поэтому так трудно получить или найти в природе истинно чистые вещества.

    Чем выше температура, тем шире пределы изоморфной смесимости. С точки зрения кристаллохимических законов это можно объяснить увеличением ионных радиусов и уменьшением разницы в радиусах. С точки зрения термодинамики уменьшение пределов изоморфизма происходит за счет

    Законы изоморфизма

    Закон Гольдшмидта. Правило диагонального изоморфизма, ограничение по электроотрицательности

    Для того чтобы элементы замещали друг друга должно выполняться несколько условий. В первую очередь должно выполняться так называемое правило Гольдшмидта, которое постулирует, что изоморфизм возможен только между ионами, размер которых различается не больше чем на 10-15 %. Однако этого недостаточно для изоморфного замещения атомов. Натрий и медь имеют очень близкие по размеру ионы, но почти никогда не образуют значительных изоморфных замещений. Причина этого в большой разнице электроотрицательностей этих элементов. Поэтому второе условие изоморфизма формулируется следующим образом: твёрдые растворы возможны, если разница электроотрицательностей меньше 0,4

    Впрочем, известны примеры, когда близкие по размеру ионы не замещают друг друга. Так, классические ионные радиусы Na и Cu практически одинаковы, около 1 Å, и нет геометрических препятствий для взаимных замещений между этими ионами. В таких случаях причиной несмесимости, то есть невозможности образовать твёрдый раствор, является разный характер химической связи в соединениях Na и Cu, так как разность их электроотрицательностей составляет 0,9. И если в первом случае образуются чисто ионные связи, то во втором частично ковалентный характер связи становится весьма существенным. Подобны же причины несмесимости в твёрдом состоянии близких по размеру атомов Ca и Hg, Sr и Pb, K и Ag и др.

    Упорядоченность твердых растворов

    Возможно четыре варианта упорядоченности замещающих атомов:

    1. Распределение атомов совершенно произвольно, вероятность встретить «белый» и «черный» атомы в любой точке кристаллической структуры пропорциональна относительному количеству тех и других атомов. Этот случай соответствует полной неупорядоченности.

    2. Однако между этими двумя случаями можно расположить еще два промежуточных. В случае Б имеется упорядоченность в ближайших координационных сферах — упорядоченность ближнего порядка. На рисунке не найдется ни одной пары «черных» атомов, располагающихся на кратчайшем друг к ДРУГУ расстоянии а или же на расстоянии а*(2)^½. Все имеющиеся сведения о тонком строении твердых растворов указывают на то, что именно такое расположение характеризует подавляющее большинство твердых растворов.

    3. Случай В характеризуется не только ближним порядком, в нем наблюдается и дальний порядок. Однако он не достигает 100 %. Большинство интерметаллических соединений характеризуется именно такой степенью упорядоченности, причем ее часто выражают определенным процентом от идеальной упорядоченности.

    4. Распределение полностью упорядоченно взаимного расположения атомов в пространстве. Практически при таком распределении примеси образуется новое соединение промежуточного состава. Примером можно назвать доломит — промежуточное соединение между магнезитом и кальцитом. Таковы структуры многих неорганических соединений.

    Из сказанного ясно, что не существует резких границ между твердым раствором и соединением. Упорядоченные твердые растворы и не полностью упорядоченные соединения являются теми самыми случаями, которые обычно реализуются в природе и в лаборатории

    15.Полиморфизм. Структурные типы полиморфных превращений. Фазовые переходы 1 и 2 рода.
    1   2   3   4   5


    написать администратору сайта