Главная страница
Навигация по странице:

  • Лекция 14.Асинхронные машины 1. Конструктивное исполнение асинхронных машин. 2. Принцип действия асинхронных машин.

  • 1. Конструктивное исполнение асинхронных машин

  • 2. принцип действия асинхронн ых машин

  • лекции. Лекции Общая электротехника. Лекции по дисциплине Общая электротехника для студентов специальностей


    Скачать 4.27 Mb.
    НазваниеЛекции по дисциплине Общая электротехника для студентов специальностей
    Анкорлекции
    Дата17.04.2022
    Размер4.27 Mb.
    Формат файлаdocx
    Имя файлаЛекции Общая электротехника.docx
    ТипЛекции
    #480717
    страница8 из 11
    1   2   3   4   5   6   7   8   9   10   11

    7. Механические характеристики электродвигателей постоянного тока

          Рассмотрим  двигатель с  параллельным возбуждением в установившемся режиме работы (рис. 14). Обмотка возбуждения подключена параллельно я корной обмотке.


      

      , откуда 

         (6)

         Механической характеристикой двигателя называется зависимость частоты вращения якоря n2от момента на валу M2при U = const и Iв= const.      Уравнение (6) является уравнением механической характеристики двигателя с параллельным возбуждением.  Эта характеристика является жесткой. С увеличением нагрузки частота вращения такого двигателя уменьшается в небольшой степени (рис. 15).

        



              Рис. 15

     На рисунке 16 изображен двигатель последовательного возбуждения. Якорная обмотка и обмотка возбуждения включены последовательно.


    Рис. 16

          Ток возбуждения двигателя одновременно является током якоря. Магнитный поток индуктора пропорционален току якоря.

           где  k - коэффициент пропорциональности. 
           Момент на валу двигателя пропорционален квадрату тока якоря.

          откуда

     Механическая характеристика двигателя последовательного возбуждения является мягкой (рис. 17).    


        

     Рис. 17

    Уравнение механической характеристики двигателя последовательного возбуждения выглядит следующим образом:



       С увеличением нагрузки скорость двигателя резко падает. 
          С уменьшением нагрузки на валу двигатель развивает очень большую частоту вращения. Говорят, что двигатель идет вразнос. Работа двигателя последовательного возбуждения без нагрузки недопустима. 
        Двигатель смешанного возбуждения имеет механическую характеристику, представляющую собой нечто среднее между механическими характеристиками двигателя параллельного и последовательного возбуждения. 
        Двигатели с параллельным возбуждением применяются для привода станков и различных механизмов, требующих широкой регулировки скорости. 
           Двигатели с последовательным возбуждением применяются в качестве тяговых двигателей электровозов, трамваев и т.д.
    Лекция 14.Асинхронные машины
    1. Конструктивное исполнение асинхронных машин.

    2. Принцип действия асинхронных машин.

    3. Основные соотношения для асинхронной машины при неподвижном и вращающемся роторе.

    4. Электромагнитный момент асинхронной машины.

    5. Механическая характеристика
    1. Конструктивное исполнение асинхронных машин

    Асинхронная машина состоит из двух основных частей, разделенных воздушным зазором: неподвижного статора и вращающегося ротора. Каждая из этих частей имеет сердечник и обмотку. При этом обмотка статора включается в сеть и является как бы первичной, а обмотка ротора - вторичной, так как энергия в нее поступает из обмотки статора за счет магнитной связи между этими обмотками.

    По своей конструкции асинхронные двигатели разделяются на два вида: двигатели с короткозамкнутым ротором и двигатели с фазным ротором. Рассмотрим устройство трехфазного асинхронного двигателя с короткозамкнутым ротором (рис.1). Двигатели этого вида имеют наиболее широкое применение.



    Рис.1. Устройство трехфазного асинхронного двигателя с короткозамкнутым ротором:

    1, 11 - подшипники; 2 - вал; 3, 9 - подшипниковые щиты; 4 - коробка выводов; 5 - сердечник ротора с короткозамкнутой обмоткой; 6 - сердечник статора с обмоткой; 7 - корпус; 8 - обмотка статора; 10 - вентилятор; 12 - кожух вентилятора; 13 – наружная оребренная поверхность корпуса; 14 – лапы; 15 – болт заземления
    Неподвижная часть двигателя - статор - состоит из корпуса 7 и сердечника 6 с трехфазной обмоткой 8. Корпус двигателя отливают из алюминиевого сплава или из чугуна либо делают сварным. Рассматриваемый двигатель имеет закрытое обдуваемое исполнение. Поэтому поверхность его корпуса имеет ряд продольных ребер, назначение которых состоит в том, чтобы увеличить поверхность охлаждения двигателя.

    В корпусе расположен сердечник статора 6, имеющий шихтованную конструкцию: отштампованные листы из тонколистовой электротехнической стали толщиной обычно 0,5 мм покрыты слоем изоляционного лака, собраны в пакет и скреплены специальными скобами или продольными сварными швами по наружной поверхности пакета. Такая конструкция сердечника способствует значительному уменьшению вихревых токов, возникающих в процессе перемагничивания сердечника вращающимся магнитным полем. На внутренней поверхности сердечника статора имеются продольные пазы, в которых расположены пазовые части обмотки статора, соединенные в определенном порядке лобовыми частями, находящимися за пределами сердечника по его торцовым сторонам.

    В расточке статора расположена вращающаяся часть двигателя - ротор, состоящий из вала 2 и сердечника 5 с короткозамкнутой обмоткой. Такая обмотка, называемая «беличье колесо», представляет собой ряд металлических (алюминиевых или медных) стержней, расположенных в пазах сердечника ротора, замкнутых с двух сторон короткозамыкающими кольцами (рис.2, а). Сердечник ротора также имеет шихтованную конструкцию, но листы ротора не покрыты изоляционным лаком, а имеют на своей поверхности тонкую пленку окисла. Это является достаточной изоляцией, ограничивающей вихревые токи, так как величина их невелика из-за малой частоты перемагничивания сердечника ротора. Например, при частоте сети 50 Гц и номинальном скольжении 6% частота перемагничивания сердечника ротора составляет 3 Гц.



    Рис.2. Короткозамкнутый ротор:

    а – обмотка «беличья клетка»; б – ротор с обмоткой, выполненной литьем под давлением;

    Короткозамкнутая обмотка ротора в большинстве двигателей выполняется заливкой собранного сердечника ротора расплавленным алюминиевым сплавом. При этом одновременно со стержнями обмотки отливаются короткозамыкающие кольца и вентиляционные лопатки (рис.2, б).

    Вал ротора вращается в подшипниках качения 1 и 11, расположенных в подшипниковых щитах 3 и 9.

    Охлаждение двигателя осуществляется методом обдува наружной оребренной поверхности корпуса 13. Поток воздуха создается центробежным вентилятором 10 прикрытым кожухом 12. На торцовой поверхности этого кожуха имеются отверстия для забора воздуха. Двигатели мощностью 15 кВт и более помимо закрытого делают еще и защищенного исполнения с внутренней самовентиляцией. В подшипниковых щитах этих двигателей имеются отверстия (жалюзи), через которые воздух посредством вентилятора прогоняется через внутреннюю полость двигателя. При этом воздух «омывает» нагретые части (обмотки, сердечники) двигателя и охлаждение получается более эффективным, чем при наружном обдуве.

    Концы обмоток фаз выводят на зажимы коробки выводов 4. Обычно асинхронные двигатели предназначены для включения в трехфазную сеть на два разных напряжения, отличающиеся в  раз. Например, двигатель рассчитан для включения в сеть на напряжения 380/660 В. Если в сети линейное напряжение 660 В, то обмотку статора следует соединить звездой, а если 380 В, то треугольником. В обоих случаях напряжение на обмотке каждой фазы будет 380 В. Выводы обмоток фаз располагают на панели таким образом, чтобы соединения обмоток фаз было удобно выполнять посредством перемычек, без перекрещивания последних (рис.3). В некоторых двигателях небольшой мощности в коробке выводов имеется лишь три зажима. В этом случае двигатель может быть включен в сеть на одно напряжение (соединение обмотки статора такого двигателя звездой или треугольником выполнено внутри двигателя).



    Рис.3. Расположение выводов обмотки статора (а) и положение перемычек при соединении обмотки статора звездой и треугольником (б)

    Монтаж двигателя в месте его установки осуществляется либо посредством лап 14 (см. рис.1), либо посредством фланца. В последнем случае на подшипниковом щите (обычно со стороны выступающего конца вала) делают фланец с отверстиями для крепления двигателя на рабочей машине. Для предохранения обслуживающего персонала от возможного поражения электрическим током двигатели снабжаются болтами заземления 15 (не менее двух). Принципиальная схема включения в трехфазную сеть асинхронного двигателя с короткозамкнутым ротором показана на рис.4, а.



    Рис.4. Принципиальные схемы включения трехфазных асинхронных двигателей с короткозамкнутым (а) и фазным (б) ротором

    Другая разновидность трехфазных асинхронных двигателей - двигатели с фазным ротором - конструктивно отличается от рассмотренного двигателя главным образом устройством ротора (рис.5). Статор этого двигателя также состоит из корпуса 3 и сердечника 4 с трехфазной обмоткой. У него имеются подшипниковые щиты 2 и 6 с подшипниками качения 1 и 7. К корпусу 3 прикреплены лапы 10 и коробка выводов 9. Однако ротор имеет более сложную конструкцию. На валу 8 закреплен шихтованный сердечник 5с трехфазной обмоткой, выполненной аналогично обмотке статора. Эту обмотку соединяют звездой, а ее концы присоединяют к трем контактным кольцам 11, расположенным на валу и изолированным друг от друга и от вала. Для осуществления электрического контакта с обмоткой вращающегося ротора на каждое контактное кольцо 1 (рис.6) накладывают обычно две щетки 2, располагаемые в щеткодержателях 3. Каждый щеткодержатель снабжен пружинами, обеспечивающими прижатие щеток к контактному кольцу с определенным усилием.

    Асинхронные двигатели с фазным ротором имеют более сложную конструкцию и менее надежны, но они обладают лучшими регулировочными и пусковыми свойствами, чем двигатели с короткозамкнутым ротором. Принципиальная схема включения в трехфазную сеть асинхронного двигателя с фазным ротором показана на рис.4, б. Обмотка ротора этого двигателя соединена с пусковым реостатом ПР, создающим в цепи ротора добавочное сопротивление Rдоб.

    На корпусе асинхронного двигателя прикреплена табличка, на которой указаны тип двигателя, завод-изготовитель, год выпуска и номинальные данные (полезная мощность, напряжение, ток, коэффициент мощности, частота вращения и КПД).



    Рис.5. Устройство трехфазного асинхронного двигателя с фазным ротором:

    1, 7 - подшипники; 2, 6 – подшипниковые щиты; 3 - корпус; 4 – сердечник статора с обмоткой; 5 – сердечник ротора; 8 - вал; 9 – коробка выводов; 10 - лапы; 11 – контактные кольца



    Рис.6 Расположение щеткодержателей
    2. принцип действия асинхронных машин

    Трехфазные асинхронные двигатели находят самое широкое применение в различных областях техники. Не менее 90% всех электродвигателей, применяемых в народном хозяйстве, являются асинхронными. Такое широкое использование эти двигатели получили благодаря простоте конструкции и надежности в работе. В устройствах автоматики они применяются главным образом для привода механизмов, не требующих регулирования частоты вращения.

    Принцип действия трехфазного асинхронного двигателя основан на способности трехфазной обмотки при включении ее в сеть трехфазного тока создавать вращающееся магнитное поле. Частота вращения этого поля n1, или синхронная частота вращения (об/мин), прямо пропорциональна частоте переменного тока f1 и обратно пропорциональна числу пар полюсов р трехфазной обмотки:

    (1)

    Для частоты f1 = 50Гц ниже приведены некоторые синхронные частоты вращения магнитного поля:



    Если необходимо изменить направление вращения магнитного поля, то изменяют порядок следования фаз трехфазной системы токов, подводимых к трехфазной обмотке. Число полюсов асинхронного двигателя определяется конструкцией обмотки статора, при этом число полюсов ротора равно числу полюсов статора.

    Для объяснения принципа действия трехфазного асинхронного двигателя воспользуемся упрощенной моделью, состоящей из неподвижной части 1, называемой статором, и вращающейся части 2, называемой ротором, разделенных воздушным зазором (рис.7).



    Рис.7 Создание вращающегося магнитного поля

    Сердечник статора состоит из спинки (ярма), через которую замыкается магнитный поток вращающегося магнитного поля, и зубцов, между которыми находятся пазы с расположенной в них трехфазной обмоткой (рис.8).

    В расточке сердечника статора находится ротор, состоящий из вала, сердечника и обмотки. Обмотка ротора представляет собой короткозамкнутую конструкцию, состоящую из восьми медных или алюминиевых стержней, замкнутых с обеих сторон по торцам медными или алюминиевыми кольцами (см. рис.2). Такая обмотка называется короткозамкнутой.



    Рис.8 Расположение катушек обмотки в пазах магнитопровода статора:

    1 – активные стороны катушек, 2 – лобовые части катушек

    При включении обмотки статора в трехфазную сеть возникает магнитное поле, вращающееся с синхронной частотой n1. Поле сцепляется с обмоткой ротора и индуцирует в его стержнях электродвижущие силы, направление которых определяют по правилу «правой руки». Обмотка ротора замкнута, поэтому ЭДС, наведенные в стержнях этой обмотки, создадут в них токи. В результате взаимодействия токов в роторе с вращающимся полем статора на стержнях ротора создаются электромагнитные силы Fэм, направление которых определяют по правилу «левой руки». Совокупность электромагнитных сил Fэм образует на роторе электромагнитный момент М, под действием которого ротор приводится во вращение с частотойn2в направлении вращения магнитного поля статора. Вращение ротора через вал передается рабочему механизму. Таким образом, электрическая энергия, поступающая из сети в обмотку статора, преобразуется в асинхронном двигателе в механическую энергию вращения.

    Отличительный признак асинхронного двигателя состоит в том, что частота вращения n2ротора меньше синхронной частоты вращенияn1магнитного поля статора.

    Объясняется это тем, что ЭДС в стержнях обмотки ротора индуцируется только при неравенстве частот вращения n2<n1. Частота вращения поля статора относительно ротора определяется частотой скольжения ns=n1n2. Отставание ротора от вращающегося поля статора характеризуется относительной величиной s, называемой скольжением:

    (2)

    Скольжение асинхронного двигателя может изменяться в диапазоне от 0 до 1, т.е. 0-100%. Если s ≈ 0, то это соответствует режиму холостого хода, когда ротор двигателя практически не испытывает противодействующего момента; если s = l - режиму короткого замыкания, при котором ротор двигателя неподвижен (n2 = 0). Скольжение зависит от механической нагрузки на валу двигателя и с ее ростом увеличивается.

    Скольжение, соответствующее номинальной нагрузке двигателя, называется номинальным скольжением. Для асинхронных двигателей малой и средней мощности номинальное скольжение изменяется в пределах от 0,08 до 0,02, т. е. 8-2%.

    Частота вращения ротора асинхронного двигателя согласно (2), об/мин,



    При изменениях нагрузки на валу двигателя частота вращения n2изменяется пропорционально(1-s).
    1   2   3   4   5   6   7   8   9   10   11


    написать администратору сайта