Главная страница
Навигация по странице:

  • Утомление мышц. Причины утомления изолированной мышцы, нервно-мышечного препарата, утомления в естественных условиях

  • Активный отдых и его механизм. (И.М. Сеченов, феномен Орбели-Гинецинского)

  • Рабочая гипертрофия и атрофия от бездеятельности

  • Особенности физиологии возбудимых тканей у детей Особенности физиологии нервов

  • Особенности физиологии мышц

  • Лекция 1-4. Лекция 1 Физиология, ее предмет, роль в системе медицинского образования и задачи


    Скачать 0.84 Mb.
    НазваниеЛекция 1 Физиология, ее предмет, роль в системе медицинского образования и задачи
    АнкорЛекция 1-4.doc
    Дата25.08.2017
    Размер0.84 Mb.
    Формат файлаdoc
    Имя файлаЛекция 1-4.doc
    ТипЛекция
    #8422
    КатегорияМедицина
    страница6 из 6
    1   2   3   4   5   6

    Механизм суммаций сокращений при тетанусе


    Амплитуда тетанического сокращения мышцы превышает высоту ее одиночного сокращения. Г. Гельмгольц (1847) назвал этот процесс суперпозицией, то есть наложением сокращений, полагая, что эффект двух следующих друг за другом раздражений равен алгебраической сумме одиночных сокращений.

    Однако эти данные не соответствовали действительности. Н.Е. Введенский (1886) провел опыт, раздражая мышечное волокно пороговым раздражителем, возникало сокращение, дальнейшее раздражение подпороговыми раздражителями поддерживало амплитуду сокращения на первоначальном уровне. Н.Е Введенский объяснил это тем, что при сокращении мышца находится в состоянии повышенной возбудимости. Поэтому амплитуда второго ритмического сокращения становится больше, чем одиночного.

    В настоящее время установлена зависимость амплитуды тетанических сокращений от фазы возбудимости, в которую попадает раздражитель. Это установлено при наложении всех трех кривых: кривой ПД, кривой Ферворна и кривой одиночного сокращения. Так, укорочение мышечного волокна начинается после достижения пика деполяризации, середина фазы укорочения совпадает с повышенной возбудимостью в фазу экзальтации, а, следовательно, и раздражитель, действующий в эту фазу, будет приводить к более сильному сокращению.

    Полагают, что в основе увеличения силы сокращений при действии ритмических раздражителей лежит повышение концентрации кальция внутри клетки, что позволяет осуществляться реакции взаимодействия актина и миозина и генерации мышечной силы поперечными мостиками достаточно длительное время.
    Утомление мышц. Причины утомления изолированной мышцы, нервно-мышечного препарата, утомления в естественных условиях

    Утомлением называется временное понижение работоспособности клетки, органа или целого организма, наступающее в результате работы и исчезающее после отдыха.

    Если длительно раздражать ритмическими электрическими стимулами изолированную мышцу, к которой подвешен груз, то амплитуда ее сокращений постепенно убывает, пока не дойдет до нуля. Полученная таким образом кривая называется кривой утомления.

    Наряду с изменением амплитуды сокращения при утомлении нарастает латентный период сокращения и увеличиваются пороги раздражения и хронаксия, то есть понижается возбудимость. Эти изменение возникают не сразу после работы, а спустя некоторое время, в течение которого наблюдается увеличение амплитуды одиночных сокращений мышцы. Этот период называется периодом врабатывания. При дальнейшем длительном раздражении развивается утомление мышечных волокон.

    Понижение работоспособности изолированной из организма мышцы при ее длительном раздражении обусловлено двумя основными причинами: первой из них является то, что во время сокращений в мышце накапливаются продукты обмена веществ (в частности, молочная, фосфорная кислоты и т. д.), оказывающие угнетающее влияние на работоспособность мышцы. Часть этих продуктов, а также ионы калия диффундируют из волокон наружу в околоклеточное пространство и оказывают угнетающее влияние на способность возбудимой мембраны генерировать потенциалы действия.

    Если изолированную мышцу, помещенную в раствор Рингера, довести длительным раздражением до полного утомления, то достаточно только сменить омывающую ее жидкость, чтобы восстановить сокращения мышцы.

    Другой причиной развития утомления изолированной мышцы является постепенное истощение в ней энергетический запасов. При длительной работе изолированной мышцы происходит резкое уменьшение запасов гликогена, вследствие чего нарушаются процессы ресинтеза АТФ и креатинфосфата, необходимых для осуществления сокращения.

    Утомление нервно-мышечного препарата обусловлено следующими причинами. При длительном раздражении нерва нарушение нервно-мышечной передачи развивается задолго до того, как мышца, а тем более нерв в силу утомления утрачивает способность к проведению возбуждения. Объясняется это тем, что в нервных окончаниях при длительном раздражении уменьшается запас "заготовленного" медиатора. Поэтому порции ацетилхолина, выделяющиеся в синапсах в ответ на каждый импульс, уменьшаются и постсинаптические потенциалы снижаются до подпороговых величин.

    Наряду с этим при длительном раздражении нерва происходит постепенное понижение чувствительности постсинаптической мембраны мышечного волокна к ацетилхолину. В результате уменьшается величина потенциалов концевой пластинки. Когда их амплитуда падает ниже некоторого критического уровня, возникновение потенциалов действия в мышечном волокне прекращается. По этим причинам синапсы быстрее утомляются, чем нервные волокна и мышцы.

    Следует отметить, что нервные волокна обладают относительной неутомляемостью. Впервые Н.Е. Введенский показал, что нерв в атмосфере воздуха сохраняет способность к проведению возбуждений даже при многочасовом непрерывном раздражении (около 8 часов).

    Относительная неутомляемость нерва отчасти зависит от того, что нерв тратит при своем возбуждении сравнительно мало энергии. Благодаря этому процессы ресинтеза в нерве в состоянии покрывать его относительно малые расходы при возбуждении даже в том случае, если это возбуждение длится много часов.

    Необходимо отметить, что утомление изолированной скелетной мышцы при ее прямом раздражении является лабораторным феноменом. В естественных условиях утомление двигательного аппарата при длительной работе развивается более сложно и зависит от большего числа факторов.

    1. В организме мышца непрерывно снабжается кровью, и, следовательно, получает с ней определенное количество питательных веществ (глюкоза, аминокислоты) и освобождается от продуктов обмена, нарушающих нормальную жизнедеятельность мышечных волокон.

    2. В целом организме утомление зависит не только от процессов в мышце, но и от процессов, развивающихся в нервной системе, участвующих в управление двигательной деятельностью.

    Так, например, утомление сопровождается дискоординацией движений, возбуждением многих мышц, которые не участвуют в совершении работы.
    Активный отдых и его механизм. (И.М. Сеченов,

    феномен Орбели-Гинецинского)

    При выявлении причин утомления двигательного аппарата в применении к целостному организму в настоящее время нередко различают два вида двигательной деятельности: локальную, когда активно сравнительно небольшое количество мышц, и общую, когда в работе участвует большинство мышц тела. В первом случае среди причин утомления на первое место выступают периферические факторы, то есть процессы в самой мышце; во втором ведущее значение приобретают центральные факторы (нервная система) и недостаточность вегетативного обеспечения движений (дыхания, кровообращения).

    Впервые И.М. Сеченов (1903) показал, что восстановление работоспособности утомленных мышц руки человека после длительной работы по подъему груза резко ускоряется, если в период отдыха производить работу другой рукой. Временное восстановление работоспособности мышц утомленной руки может быть достигнуто и при других видах двигательной активности, например, при работе различных мышц нижних конечностей. В отличие от простого покоя такой отдых был назван И.М. Сеченовым активным. Сеченов рассматривал эти факты как доказательство того, что утомление, прежде всего, развивается в нервных центрах.

    Убедительным доказательством роли изменения состояния нервных центров в развитии утомления в целом организме служат опыты с внушением. Так, исследуемый может длительно поднимать тяжелую гирю, если ему внушить, что в его руке находится легкая корзина. Напротив, если внушить исследуемому, поднимающему легкую корзину, что ему дана тяжелая гиря, то быстро развивается утомление. При этом изменение пульса, дыхания и газообмена находится в соответствии не с реальной, осуществляемой человеком работой, а с той, которая ему внушена (В.М. Василевский, Д.И. Шатенштейн).

    Феномен Орбели-Гинецинского был открыт в 1923 г. В опытах на нервно-мышечном препарате двигательные волокна раздражались электростимулятором. Изолированная мышца отвечала сокращением на каждое из ритмически повторяющихся раздражений, и на ленте кимографа регистрировалась типичная кривая мышечного сокращения. По мере утомления амплитуда кривой снижалась. После раздражения симпатических нервов, происходило увеличение амплитуды сокращений мышцы, и на кимограмме отмечалась новая волна повышенной активности. Позднее феномен был подтвержден и на мышцах млекопитающих в условиях нормального кровоснабжения.

    Л.А. Орбели выдвинул представление об универсальной адаптационно-трофической функции симпатической нервной системы, регулирующей функциональные свойства всех органов и тканей, устанавливая их на оптимальный для данных условий уровень. Эта регуляция не ограничивается гладкими мышцами и железами, она охватывает все звенья рефлекторной дуги - рецепторы, центральную нервную систему, нервные проводники и скелетную мускулатуру.

    В основе феномена Орбели-Гинецинского лежит активация симпатической нервной системы. Дальнейшие исследования позволили выявить общность влияния симпатической нервной системы и ретикулярной формации головного мозга на восстановление работоспособности мышц.
    Рабочая гипертрофия и атрофия от бездеятельности

    Систематическая интенсивная работа мышц приводит к увеличению массы мышечной ткани. Это явление носит название рабочей гипертрофии мышцы. Рабочая гипертрофия мышцы происходит отчасти за счет продольного расщепления, а главным образом за счет утолщения (увеличения диаметра) мышечных волокон.

    Можно выделить два основных типа рабочей гипертрофии мышечных волокон. Первый тип - саркоплазматический - утолщение мышечных волокон за счет преимущественного увеличения объема саркоплазмы, то есть несократительной части мышечных волокон. Этот тип гипертрофии приводит к повышению метаболических резервов мышцы: гликогена, безазотистых веществ, креатинфосфата, миоглобина и др. Значительное увеличение числа капилляров в результате тренировки также может в какой-то мере вызывать утолщение мышцы. Первый тип рабочей гипертрофии мало влияет на рост силы мышц, но зато значительно повышает способность их к продолжительной работе, то есть выносливость.

    Второй тип рабочей гипертрофии - миофибриллярный - связан с увеличением объема миофибрилл, то есть собственно сократительного аппарата мышечных волокон. При этом мышечный поперечник может увеличиваться не очень значительно, так как в основном возрастает плотность укладки миофибрилл в мышечном волокне. Второй тип рабочей гипертрофии ведет к значительному росту максимальной силы мышцы. Существенно увеличивается и абсолютная сила мышцы, тогда как при первом типе рабочей гипертрофии она или совсем не изменяется, или даже несколько уменьшается.

    Преимущественное развитие первого или второго типа рабочей гипертрофии определяется характером мышечной тренировки. Вероятно, длительные динамические упражнения с относительно небольшой нагрузкой вызывают рабочую гипертрофию главным образом первого типа (преимущественное увеличение объема саркоплазмы, а не миофибрилл). Изометрические упражнения с применением больших мышечных напряжений (более 2/3 от максимальной произвольной силы тренируемых мышечных групп), наоборот способствуют развитию рабочей гипертрофии второго типа (миофибриллярной гипертрофии).

    В основе рабочей гипертрофии лежит интенсивный синтез мышечных белков, ДНК и РНК. Очень важную роль в регуляции объема мышечной массы играют гормоны - андрогены.

    У тренированных людей, у которых многие мышцы гипертрофированы, мускулатура может составлять до 50% массы тела (вместо 35-40% в норме).

    Противоположным рабочей гипертрофии состоянием является атрофия мышц от бездеятельности. Она развивается во всех случаях, когда мышца почему-либо длительно не совершает нормальной работы. Это наблюдается, например, при обездвижении конечности в гипсовой повязке, долгом пребывании больного в постели, перерезке сухожилия, вследствие чего мышца перестает совершать работу.

    При атрофии диаметр мышечных волокон и содержание в них сократительных белков, гликогена, АТФ и других, важных для сократительной деятельности веществ, уменьшаются. После возобновления нормальной работы атрофия мышцы постепенно исчезает.


    Особенности физиологии возбудимых тканей у детей
    Особенности физиологии нервов

    Проводимость новорожденного ребенка ниже, чем у взрослого в два раза и скорость проведения возбуждения составляет около 50% от таковой у взрослых. Проведения возбуждения по нервным волокнам плохо изолировано.

    В процессе взросления нервные волокна миелинизируются, увеличивается диаметр осевого цилиндра и волокна в целом, а чем толще становится волокно, тем меньше продольное сопротивление ионному току. Это приводит к тому, что скорость распространения ПД увеличивается. У детей он достигает показателей взрослого человека к 5-9 годам для разных нервных волокон. Так, передние спинномозговые корешки созревают к 2-5 году жизни, а задние спинномозговые корешки – к 5-9 году.

    Возбудимость нервных волокон новорожденного значительно ниже, чем у взрослого. Характеристикой этого является хронаксия, величина которой в несколько раз выше; потенциал покоя, который у детей значительно ниже. Низкая величина потенциала покоя связана с тем, что клеточная мембрана имеет высокую ионную проницаемость и постоянно происходит утечка ионных токов. Это приводит к снижению трансмембранной разности ионов (градиенту концентрации) и приводит к формированию низкой амплитуды потенциала действия в сочетании с большей его продолжительностью и отсутствием реверсии.

    В процессе роста проницаемость мембраны уменьшается и мембранный потенциал достигает показателей взрослого человека. Соответственно увеличивается и амплитуда потенциала действия, скорость проведения ПД возрастает, так как при высокой амплитуде легче вызвать возбуждение соседнего участка волокна.

    У плода и ребенка первых лет жизни мякотные волокна плохо миелинизированы и каналы для натрия и калия располагаются равномерно. В онтогенезе волокно миелинизируется, ионные каналы концентрируются в перехватах Ранвье, расстояние между перехватами увеличивается. Это характеризует структурную зрелость мякотных волокон. В безмякотных волокнах распределение ионных каналов остается равномерным.

    Лабильность нервных волокон новорожденных также низка. У детей более старшего возраста она увеличивается за счет снижения длительности рефрактерного периода и увеличения скорости проведения возбуждения.

    Особенности физиологии мышц

    У человека количество волокон в мышце устанавливается через 4-5 месяцев после рождения и затем практически не меняется на протяжении всей жизни. При рождении толщина их составляет примерно 1/5 толщины волокон у взрослых людей. Диаметр мышечных волокон может значительно меняться под воздействием тренировки.
    Возбудимость мышц новорожденного очень низка. Показателем этого является высокая хронаксия и большой порог деполяризации.

    У новорожденного МП миоцитов составляет -20-40мВ. Трансмембранная разность ионов К+ и Nа+ невысока. Поэтому и величина ПД также небольшая. Кроме того, отмечается длительность фаз абсолютной и относительной рефрактерности.

    В процессе роста проницаемость мембраны уменьшается, работа ионных насосов улучшается и увеличивается МП и ПД.

    Лабильность детей ниже, чем у взрослых вследствие большой длительности рефрактерных фаз. с возрастом происходит укорочение фаз абсолютной и относительной рефрактерности и как следствие возрастание скорости проведения возбуждения и увеличению быстроты движений.

    Проводимость. Низкая у новорожденных скорость проведения ПД, с возрастом увеличивается. К этому приводит увеличение толщины мышечного волокна и увеличение амплитуды потенциала действия, так как снижается сопротивление ионному току и быстрее развивается возбуждение на соседнем участке мембраны.

    Сократимость. Одиночные сокращения мышц новорожденного замедленны – как фаза укорочения, так и фаза расслабления - и характеризуется большим временем сокращения. В мышцах ребенка быстрее накапливаются продукты метаболизма и, поэтому, тетанус имеет пологое начало и постепенное расслабление, как тетанус утомленной мышцы. Мышцы отвечают тоническим сокращением на раздражители любой частоты и сокращаются без пессимального торможения столько, сколько действует раздражитель. Это связано с недостаточной зрелостью мионевральных синапсов.

    У новорожденных отсутствует разделение мышц на быстрые и медленные, но уже с первых дней жизни у ребенка начинается постепенная дифференцировка, характерная для взрослых.

    Эластичность мышц новорожденного выше, чем у взрослого и с возрастом уменьшается. А упругость и прочность, наоборот, увеличиваются.


    1   2   3   4   5   6


    написать администратору сайта