Главная страница

Лекция Комплексные числа, их изображение на плоскости. Алгебраические операции над комплексными числами. Комплексное сопряжение. Модуль и аргумент комплексного числа.


Скачать 0.84 Mb.
НазваниеЛекция Комплексные числа, их изображение на плоскости. Алгебраические операции над комплексными числами. Комплексное сопряжение. Модуль и аргумент комплексного числа.
Дата08.04.2022
Размер0.84 Mb.
Формат файлаrtf
Имя файла312576.rtf
ТипЛекция
#454409
страница2 из 3
1   2   3
где то существуют такие действительные числа что
. (8.8)
Примеры.

1. .

Полученная дробь должна совпадать с исходной при любых х, следовательно, коэффициенты при одинаковых степенях х в числителях обеих дробей должны быть равными. Отсюда , то есть А = 1, В = -1. Следовательно, исходную дробь, знаменатель которой имеет только действительные корни (причем простые, то есть кратности 1) можно представить в виде: .

2.

Приравнивая коэффициенты при одинаковых степенях х в числителях, получаем:

, откуда А = 1, В = -3, С = 3, D = 5. Таким образом, данную дробь, знаменатель которой имеет действительный корень х = 0 кратности 2 и комплексно сопряженные корни преобразуем в сумму дробей:

.
Лекция 3. Интегрирование простейших и произвольных правильных дробей. Интегрирование произвольных рациональных функций. Интегрирование дробно-линейных иррациональностей
В пошлой лекции было показано, что любую правильную рациональную дробь можно представить в виде линейной комбинации дробей вида:
1) , 2) , 3) , 4) . (9.1)
Эти дроби называются простейшими (или элементарными) дробями. Выясним, каким образом они интегрируются.
1)

2) (9.2)

3) (9.3)
Сделаем замену и обозначим . Тогда требуется вычислить интеграл


(9.4)
4) При интегрировании простейших дробей последнего типа воспользуемся той же заменой, что и в предыдущем случае, и представим подынтегральное выражение в виде:

где

Рассмотрим отдельно способ интегрирования In .




. (9.5)

Таким образом, получена рекуррентная формула, позволяющая в конечном счете свести вычисление этого интеграла к

Итак, интеграл от любой простейшей дроби находится в явном виде и является элементарной функцией.

Теорема 9.1. Неопределенный интеграл от любой рациональной дроби на всяком промежутке, на котором ее знаменатель не равен нулю, существует и выражается через элементарные функции, а именно рациональные дроби, логарифмы и арктангенсы.

Доказательство.

Представим рациональную дробь в виде: (см. лекцию 8). При этом последнее слагаемое является правильной дробью, и по теореме 8.4 ее можно представить в виде линейной комбинации простейших дробей. Таким образом, интегрирование рациональной дроби сводится к интегрированию многочлена S(x) и простейших дробей, первообразные которых, как было показано, имеют вид, указанный в теореме.

Замечание. Основную трудность при этом составляет разложение знаменателя на множители, то есть поиск всех его корней.

Пример.





Интегрирование дробно-линейных иррациональностей.

Из ранее доказанного следует, что любую рациональную дробь можно проинтегрировать, поэтому в дальнейшем будем считать задачу интегрирования функции выполненной, если удается представить эту функцию в виде рациональной дроби. В частности, для интегралов вида
,
где R – рациональная функция (многочлен или рациональная дробь), r1 ,…,rn – дроби с одним и тем же знаменателем m , а , замена приводит к . Таким образом, х является рациональной функцией t, следовательно, его производная тоже будет рациональной функцией. Кроме того, - тоже рациональные функции от t (так как pi – целое число). Поэтому после замены подынтегральное выражение примет вид R1 (t)dt , где R1 – рациональная функция, интегрируемая описанными выше способами.

Замечание. С помощью подобных замен можно интегрировать функции вида , и, в частности,

Примеры.

1. Сделаем замену , тогда , а . Следовательно,




2. . Так как , а , выберем в качестве новой переменной . Тогда . Поэтому



Лекция 4. Интегрирование рациональных тригонометрических выражений. Интегрирование квадратичных иррациональностей. Интегрируемость в элементарных функциях
Рассмотрим интегрирование некоторых тригонометрических выражений.

Интегралы вида вычисляются с применением формул
(10.1)

Пример.

Интегралы вида , где т и п – целые числа, интегрируются с помощью замен: а) если хотя бы одно из чисел т,п – нечетное (например, т), можно сделать замену t = sin x (или t = cos x при нечетном п).

Пример 1.





Пример 2.







б) если т и п – четные положительные числа, можно понизить степени тригонометрических функций с помощью формул
.
Пример.











в) если т и п – четные и хотя бы одно из них отрицательно, можно применить замену t = tg x или t = ctg x. Пример.





Интегралы вида

где R – рациональная функция, сводятся к интегралам от рациональных функций с помощью универсальной тригонометрической подстановки:
,
тогда
, (10.2)
то есть все составляющие подынтегрального выражения представляют собой рациональные функции от t. Пример. Если подынтегральная функция имеет вид R (sin²x, cos²x), можно выбрать замену t = tg x. При этом , (10.3) и степень полученной рациональной функции будет ниже, чем при универсальной тригонометрической подстановке, что облегчает дальнейшее интегрирование.

Пример.





Интегрирование квадратичных иррациональностей.

При вычислении интегралов свести подынтегральную функцию к рациональной помогают замены:

а) при этом dx = acos t dt, .

б) tg t, тогда ,

в) соответственно

Пример 1. Вычислим интеграл Пусть тогда

Заметим, что

.

Поэтому ответ можно представить в виде:

Пример 2. Для вычисления интеграла выберем замену x = 3tg t. При этом
,
где u = sin t . Представив подынтегральную функцию в виде суммы простейших дробей, получим:



Учитываем, что
).
Пример 3. Вычислим интеграл с помощью замены . Тогда

Интегрируемость в элементарных функциях.

В предыдущих лекциях рассмотрены методы интегрирования некоторых элементарных функций. Однако далеко не все элементарные функции интегрируемы, то есть имеют первообразные, также являющиеся элементарными функциями. В качестве примеров можно привести функции и другие. Этим операция интегрирования отличается от дифференцирования, при котором производная любой элементарной функции является тоже элементарной функцией. Для отыскания интегралов от функций, не имеющих элементарной первообразной, вводятся и используются новые классы функций, не являющихся элементарными.
Лекция 5. Задачи, приводящие к понятию определенного интеграла. Определенный интеграл, его свойства. Теорема о среднем для определенного интеграла
Для решения многих задач из различных областей науки и техники требуется применение определенного интеграла. К ним относятся вычисление площадей, длин дуг, объемов, работы, скорости, пути, моментов инерции и т.д. Определим это понятие.

Рассмотрим отрезок [a, b] оси Ох и определим понятие разбиения этого отрезка как множества точек xi : a=x1 < x2 <…< xn-1 < xn=b. При этом точки xi называются точками разбиения, отрезки [xi-1, xi] – отрезками разбиения (их длины обозначаются Δxi), а число | τ | = max ( Δx1, Δx2,…, Δxn ) называется мелкостью разбиения.

Пусть на [a,b] задана функция y = f(x). Выберем на каждом отрезке разбиения по точке ξi и составим сумму вида
1   2   3


написать администратору сайта