Методы обработки ЭД. Методы обработки экспериментальных данных
Скачать 5.37 Mb.
|
Насыщенные планы. Планы Плаккета – БерманаПлаккет и Берман в 1946 г. предложили способ построения насыщенных планов (с единичными координатами) при m=11, 19, 23, 27, 31, 35, 39, 43, 47, 51, 55, 59, 63, 67, 71, ... . Задаются базовые строки. Каждая следующая строка матрицы планирования образуется из исходной циклическим сдвигом вправо. Получается матрица размером m x m. Последняя (m+1) -я строка матрицы планирования состоит из минус единиц. Пример базисных строк:
При проведении эксперимента выход объекта дрейфует. Если этот дрейф кусочно-постоянный, то его можно нейтрализовать, изменяя порядок проведения эксперимента во времени. Для этого разбивают матрицу планирования на блоки и последовательно реализуют (во времени) эту матрицу: вначале один блок, затем другой и т. д. В качестве примера рассмотрим ортогональный план 23 . Считаем, что выход объекта имеет аддитивный дрейф на величину Δ1 (когда проводятся эксперименты с номерами 1, 2, 3, 4) и на величину Δ2 (когда проводятся эксперименты № 5, 6, 7, 8). Этот дрейф приводит к смещению на величину (4Δ1-4 Δ2)/8 параметра β3. Пример эксперимента в котором выход объекта дрейфует.
Для устранения этого недостатка изменим порядок проведения эксперимента, разбив план на 2 блока.
1. Проверка однородности дисперсий. Если при реализации ортогонального плана остается неизвестным, на самом ли деле дисперсии выходов (ошибок измерения) одинаковы в каждой точке плана, то необходимо в каждой точке плана осуществить несколько дополнительных измерений выхода, найти оценку дисперсии (в каждой точке) и проверить гипотезу о равенстве дисперсий. Проверка однородности дисперсий производится с помощью различных статистик. Простейшей из них является статистика Фишера, представляющая собой отношение наибольшей из оценок к наименьшей: Так же можно выполнить проверку с использованием статистики Кочрена: 2. Проверка адекватности модели. Вычисляем остаточную сумму квадратов , делим ее на число степеней свободы n-m-1 и получаем остаточную дисперсию (дисперсию адекватности): На основе дополнительного эксперимента объема n0 в одной из точек плана (например в центре плана) строим оценку для дисперсии выхода объекта. Число степеней свободы для оценки n0 -1. По статистике Фишера проверяем гипотезу о равенстве дисперсий, которая совпадает с гипотезой об адекватности модели. Если статистика не превосходит порогового значения, то принимается гипотеза об адекватности модели. В противоположном случае эта гипотеза отвергается. Надо заново строить модель, например, усложняя ее за счет введения дополнительных факторов, либо отказываться от линейной модели и переходить к квадратичной модели. 3. Проверка значимости коэффициентов заключается в проверке гипотезы H: bj = 0 для каждого j=1,…,m. Вычисляется статистика Стьюдента: Если |t| 4. Интерпретация модели. Производится качественное сопоставление поведения полученной модели с реальными процессами объекта. При этом привлекается информация от экспертов (например технологов), детально изучивших объект. Знак коэффициентов βj , линейной модели показывает характер влияния входа объекта на выход. Знак "+" свидетельствует о том, что с увеличением входа (фактора) растет величина выхода объекта и наоборот. Величина коэффициентов βj – количественная мера этого влияния. Если характер связи между входами и выходом объекта на основе построенной модели не соответствует реальным связям (на базе информации от экспертов) в объекте, то такую модель надо поставить под сомнение либо полностью отказаться от нее. Построение планов второго порядка – задача в математическом отношении значительно более сложная, чем в случае построения планов первого порядка. Модель второго порядка при m=3 имеет вид: Для вычисления коэффициентов модели второго порядка необходимо варьировать переменные не менее чем на трех уровнях. Это вызывает необходимость постановки большого числа опытов. Полный факторный эксперимент содержит 3m точек.
В 1951 году Бокс и Уилсон предложили составлять композиционные планы. Число точек плана равно величине n=n1+2m+n0 . Здесь n1– число точек полного факторного эксперимента или дробной реплики 2m – число парных точек, расположенных на осях координат; n0 – число опытов в центре плана. Точки на осях координат называют звездными точками. Их количество равно удвоенному числу факторов. Расстояние от центра плана до звездной точки одинаково. Его обозначают буквой α и называют звездным плечом. Композиционные планы имеют следующие положительные свойства: 1. Они могут быть получены в результате достройки планов первого порядка. 2. Дополнительные точки на осях координат и в центре плана не нарушают ортогональности для столбцов, соответствующих факторам xj и эффектам взаимодействия xixj . Пример композиционного плана:
С учетом новых переменных xl’ получаем следующее уравнение модели (для случая m=2): |