Нормальная физиология ТГМУ. Методические указания к практическим занятиям по нормальной физиологии для студентов 2 курса лечебного, педиатрического и медикопрофилактического факультетов
Скачать 0.93 Mb.
|
Тема 5. Физиология тканевых элементов нервной системы Время- 2 часа Мотивационно-воспитательная характеристика темы: Знание процессов, лежащих в основе деятельности нервной системы (формирование возбуждения в нервных клетках, проведение возбуждения по нервным волокнам и в синапсах ) необходимо в практической деятельности врача для оценки функционального состояния нервной системы и регуляции двигательных функций. Учебная цель: Уяснить особенности строения и функционирования нервных клеток, законы и механизмы проведения возбуждения по нервным волокнам, особенности передачи возбуждения в нервно-мышечном синапсе, усвоить сущность парабиоза. Содержание занятия
Вопросы для самоподготовки 1.Структурно-функциональная единица нервной системы. Особенности строения и функционирования нервной клетки. Функциональные зоны нейрона. 2. Классификация нервных клеток. 3. Функциональное значение нейроглии. 4. Классификация нервных волокон. 5. Особенности распространения возбуждения по мякотным и безмякотным нервным волокнам. 6. Законы проведения возбуждения по нервным волокнам 7. Парабиоз. Фазы парабиоза. 8. Механизм передачи возбуждения в нервно-мышечном синапсе. 9. Свойства химических синапсов. Домашнее задание
Самостоятельная работа на занятии
Вопросы для самоконтроля
Тестовый контроль 1 Потенциал действия в нейроне в естественных условиях возникает в: 1) в ядре тела клетки; 2) в начальном сегменте аксона – аксоном холмике; 3) аксо-соматическом синапсе; 4) дендритах нервной клетки. 2. Что определяет скорость проведения возбуждения по нервному волокну? 1) поперечное сечение волокна; 2) длина волокна. 3. Парабиотический участок способен полностью воспроизводить лишь небольшую частоту импульсов, при большом потоке ответ приближается к эффекту слабого раздражения. Какая это стадия парабиоза? 1) уравнительная; 2) парадоксальная; 3) тормозная. 4. Какой потенциал возникает внутри клетки нейрона во время её возбуждения? 1) отрицательный; 2) положительный. 5. Свойство какого возбуждения отражает потенциал концевой пластинки? 1) местное возбуждение; 2) распространяющееся возбуждение; 3) стойкое возбуждение. 6. Какой медиатор участвует в передаче возбуждения в нервно-мышечном синапсе? 1) норадреналин; 2) ацетилхолин; 3) серотонин. 7. Поставьте по порядку стадии развития ПД нейрона: 1) пик ПД; 2) локальный ответ; 3) положительный следовой потенциал; 4) отрицательный следовой потенциал. 8. Какие структуры двигательной единицы утомляются быстрее? 1) нервное волокно; 2) мышечное волокно; 3) синапс. 9. Наиболее существенным изменением при воздействии антихолинэстеразным препаратом будет: 1) снижение лабильности нервно-мышечного синапса; 2) повышение лабильности нервно-мышечного синапса; 3) усиление мышечных сокращений в ответ на прямое раздражение; 4) ослабление мышечных сокращений в ответ на прямое раздражение. 10. Может ли парабиоз носить необратимый характер? 1) да; 2) нет. Ответы: 1 – 2 ; 2- 1; 3-1; 4-2; 5-1; 6-2; 7-2,1,4,3.; 8-3; 9-1; 10-1. Ситуационные задачи:
Ответы:
Литература: А) Основная: 1. Физиология человека. Учебник. /Под ред. В.М.Покровского, Г.Ф.Коротько.- М.: Медицина, 2003, с.58-74 2. Физиология человека. / Под ред. Н.А. Агаджаняна, В.И.Циркина.- СПб: СОТИС, 1998, 2000, 2002, с .27-33;41-42. 3. Физиология человека..Учебник. /Под ред. В.М.Смирнова. М.:Медицина, 2002, с.31-33 4. Руководство к практическим занятиям по нормальной физиологии /Под ред.С.М.Будылиной, В.М.Смирнова- М: Издательский центр «Академия», 2005, с.15-26 5. Руководство к практическим занятиям по физиологии / Под ред. Г.И.Косицкого и В.А Полянцева.- М.: Медицина, 1988, с.86-90. Б) Дополнительная: 1 Основы физиологии человека. /Под ред. Б.И.Ткаченко.- СПб,1994, т.1, с. 97-103. .2 Физиология человека. /Под ред. Г.И.Косицкого.- М.: Медицина, 1985, . 3 Физиология человека. /Под ред. Р.Шмидта, Г.Тевса,- М.: Мир, 1996, т.1, 4.Руководство к практическим занятиям по физиологии / Под ред. К.В.Судакова- М, 2002, с. 67-76.
Краткое теоретическое содержание темы: 4.1 Особенности строения и функционирования нейронов. Современные представления о структурно-функциональной организации нервной системы базируются на нейронной теории, согласно которой структурной и функциональной единицей нервной системы является нервная клетка- нейрон. Это специализированные клетки, способные принимать, обрабатывать, передавать и хранить информацию, формировать ответные реакции на раздражение. Всё это связано с уникальной способностью нейронов генерировать электрические потенциалы благодаря особым свойствам клеточной мембраны. Нейрон обладает всеми свойствами возбудимой структуры: возбудимостью, проводимостью, функциональной лабильностью. Самая высокая возбудимость мембраны в области аксонного холмика (место перехода тела нейрона в аксон), именно здесь возникает потенциал действия, который распространяется в другие отделы нейрона. Самая низкая возбудимость в области дендритов. В нейроне можно выделить 3 функциональные зоны: воспринимающую - дендриты и мембрана сомы нейрона; интегративную- тело нейрона с аксонным холмиком; передающую – аксонный холмик с аксоном. Потенциал действия многих нейронов характеризуется длительной следовой гиперполяризацией, что регулирует частоту ПД, генерируемых нервной клеткой ( это характерно, в частности, для мотонейронов). Важной особенностью функционирования нейронов является высокая интенсивность энергетического и пластического обмена. Об этом свидетельствует наличие большого количества митохондрий и рибосом, которые вместе с эндоплазматической сетью формируют базофильное вещество ( вещество Ниссля или тигроид). Длительное возбуждение клетки приводит к исчезновению базофильного вещества, а значит , и к прекращению синтеза специфического белка. Следовательно, по состоянию базофильного вещества можно судить о функциональной активности нейрона. Синтезируемые в теле клетки вещества с током аксоплазмы перемещаются в аксон, где участвуют в образовании специфических веществ – передатчиков возбуждения – нейромедиаторов или нейротрансмиттеров. Функциональная классификация нейронов. Выделяют три типа нейронов:
В зависимости от синтезируемых медиаторов нейроны могут быть холинергические, адренергические , серотонинергические, дофаминергические и т.д. По расположению нейронов в нейронной сети выделяют первичные, вторичные и т.д. ( или нейроны 1-го , 2-го порядка и т.д). Следовательно, среди афферентных нейронов могут быть первичные чувствительные нейроны, вторичные чувствительные нейроны и т.д. То же самое может быть и среди вставочных и эфферентных нейронов. По чувствительности к действию раздражителей различают моносенсорные ( воспринимают действие раздражителей одной модальности) и полисенсорные ( реагирующие на разномодальные раздражители). 4.2. Нейро-глиальные взаимоотношения. Пространство между нейронами заполнено нейроглией («нервный клей»). Количество глиальных клеток превышает количество нейронов в 8-10 раз. В отличие от нервных клеток эти клетки способны делиться; с возрастом в мозге человека число нейронов уменьшается , а количество глиальных клеток увеличивается. Нейроглия делится на макроглию ( развивается из нервной трубки) и микроглию, имеющую мезенхимное происхождение и выполняющую фагоцитарные функции. Клетки макроглии представлены астроцитами, располагающимися главным образом в сером веществе мозга ( особенно их много в коре больших полушарий), олигодендроцитами, содержащимися преимущественно в белом веществе ( так как они учатвуют в миелинизации нервных волокон) и эпендимоцитами, выстилающими полость желудочков мозга. В отличие от нервных клеток глиальные клетки не генерируют нервный импульс, но они необходимы для функционирования нейронов. Клетки нейроглии выполняют трофические, разграничительные, опорные, защитные, секреторные, регенеративные функции. Нейроглия , в частности астроциты, являются частью гематоэнцефалического барьера, регулирующего проникновение из крови в мозг биологически активных веществ, продуктов обмена, различных химических веществ, воздействующих на структуры мозга. Проницаемость гематоэнцефалического барьера обеспечивает поступление в нервные клетки кислорода, глюкозы и других питательных веществ и препятствует проникновению в мозг чужеродных веществ, микроорганизмов, токсинов. Поступление веществ в клетки мозга осуществляется двумя путями: через цереброспинальную жидкость ( так называемый ликворный путь) и через стенку капилляров, т.е. через гематоэнцефалический барьер. У взрослого человека последний является основным путем движения веществ в нервные клетки. Проницаемость гематоэнцефалического барьера зависит от функционального состояния организма, обменных процессов в ткани мозга, содержания в крови гормонов, ионов. Например, при стрессе повышение содержание адреналина в крови способствует проникновению его через гематоэнцефалический барьер и воздействию на адренореактивные структуры гипоталамуса, запускающих дальнейший механизм стресс-реакций ( активацию гипоталамо-гипофизарно-надпочечниковой системы и т.д.). Через гематоэнцефалический барьер реализуется принцип обратной химической связи организма, что обеспечивает саморегуляцию постоянства внутренней среды организма. Функции же самого гематоэнцефалического барьера регулируются высшими отделами ЦНС и гуморальными факторами. 4.3. Проведение возбуждения по нервным волокнам. Проведение нервного импульса – это специализированная функция нервных волокон. Нервное волокно – это отросток нервной клетки ( осевой цилиндр), погруженный в шванновскую клетку ( клетка олигодендроглии)., которая , прокручиваясь много раз вокруг осевого цилиндра, может образовывать мякотную (миелиновую) оболочку, в связи с чем нервные волокна могут быть мякотными (миелиновыми) и безмякотными (безмиелиновыми). В возникновении и проведении нервного импульса основная роль принадлежит мембране осевого цилиндра. Миелиновая оболочка является электрическим изолятором и выполняет трофическую функцию. Распространение возбуждения по нервным волокнам осуществляется на основе ионных механизмов генерации ПД и воздействия местных электрических токов ( между возбужденными и невозбужденными участками ) на проницаемость мембраны. Скорость распространения нервного импульса зависит: 1 – от диаметра волокна ( с увеличением диаметра увеличивается скорость); 2 – от строения волокна. По безмякотным волокнам возбуждение распространяется непрерывно вдоль мембраны осевого цилиндра – это релейный тип распространения возбуждения. При таком типе возбуждение распространяется медленно и с затуханием. Для мякотных волокон характерен сальтаторный тип проведения возбуждения – скачкообразное распространение ПД по перехватах Ранвье.( участки, лишенные мякотной оболочки). Мембрана осевых цилиндров в области перехватов специализирована для генерации возбуждения, т. к. в этих участках самая высокая плотность натриевых каналов . В основе распространения возбуждения – местные токи, идущие через межтканевую жидкость, окружающие волокно. Иногда может быть «перепрыгивание» через несколько перехватов. Сальтаторный тип проведения имеет следующие преимущества : 1 - большая скорость проведения; 2 – малые затраты энергии на работу калий- натриевого насоса, так как потери ионов невелики ( в расчете на единицу длины волокна). Распространение возбуждения по нервным волокнам подчиняется ряду законов: 1 – закон анатомической и физиологической непрерывности. Проведение возбуждения возможно только при сохранении структуры мембраны осевого цилиндра. (анатомическая непрерывность) и сохранения активности натриевых каналов (физиологическая непрерывность). Блокада натриевых каналов, накопление калия в межклеточном веществе, приводящие к стойкой деполяризации мембраны , снижает возбудимость и делает невозможным проведение возбуждение по нервному волокну ( что,например, имеет место при парабиозе). Нарушение физиологической непрерывности является обратимой в отличие от анатомической. 2- закон двустороннего проведения возбуждения. По нервному волокну возбуждение проводится как в центростремительном ( к телу нейрона) так и в центробежном ( к окончанию аксона) направлениях. 3 – закон изолированного проведения возбуждения. Нервный импульс не переходит с одного волокна на другое и оказывает действие только на те клетки, с которыми контактирует. Это имеет важное значение, так как нервный ствол содержит большое количество нервных волокон, иннервирующих различные клетки и ткани. Изолированное проведение обусловлено тем, что сопротивление жидкости в межклеточных щелях ниже, чем мембраны нервных волокон, поэтому ток идет по межклеточным щелям, не заходя в соседние волокна.
Классификация нервных волокон основана на различии строения, скорости проведения возбуждения, длительности различных фаз ПД. Выделяют 3 типа нервных волокон: 1 – тип А , включает подгруппы альфа, бетта, гамма и дельта. Это толстые мякотные волокна с высокой скоростью проведения возбуждения. Самые быстрые – волокна А –альфа, иннервирующие скелетные мышцы, проводят возбуждение со скоростью 70- 120 м/сек; Волокна А – гамма иннервируют мышечные рецепторы, А-бетта и А –дельта являются чувствительными, их скорость от 30 до 60 м/сек.; 2 – тип В – мякотные волокна с меньшим ( по сравнению с типом А) диаметром , со скоростью проведения возбуждения 3- 18 м/сек. К этим волокнам относятся преганглионарные волокна вегетативной нервной системы и некоторые чувствительные; 3 – тип С –тонкие безмякотные волокна с самой низкой скоростью проведения возбуждения ( до 3 м/сек.). Этими волокнами являются постганглионарные волокна вегетативной нервной системы и некоторые чувствительные (в частности, волокна болевой чувствительности.). Для них характерны длительные следовые потенциалы и низкая возбудимость.
6.2.Передача возбуждения в нервно-мышечном синапсе Для функционирования двигательных единиц необходимо, чтобы каждое мышечное волокно получило сигнал о сокращении от соответствующего мотонейрона. Передача возбуждения от нерва к мышце осуществляется через нервно-мышечный синапс или моторную бляшку, включающий пресинапс (окончание аксона мотонейрона), постсинапс или концевую пластинку (мембрана мышечного волокна), между которыми находится синаптическая щель. По механизму передачи возбуждения нейро-мышечный синапс относится к химическому синапсу. Медиатором мышечного сокращения является ацетихолин, который локализуется в синаптических пузырьках пресинапса. Для его высвобождения необходимо присутствие ионов кальция, который поступает в пресинапс в процессе возбуждения пресинаптической мембраны. Ацетилхолин взаимодействует с Н-холинорецепторами постсинаптической мембраны мышечного волокна, приводя к открытию в ней натриевых каналов и к деполяризации мембраны. Постсинаптический потенциал нервно-мышечного синапса носит название потенциала концевой пластинки (ПКП), имеющего свойства местного возбуждения и зависящего от количества выброшенного медиатора. При достижении критического уровня деполяризации ПКП переходит в потенциал действия (ПД), распространяется по мембране мышечного волокна и вглубь его ( по Т-системам), инициируя электромеханическое сопряжение и мышечное сокращение, механизм которого был рассмотрен раннее. Оставшийся в щели ацетилхолин разрушается холинэстеразой, освобождая место для новой порции медиатора. При снижении активности холинэстеразы ацетилхолин накапливается в синаптической щели, вызывая явление стойкой деполяризации постсинаптической мембраны и препятствуя выбросу новой порции медиатора, что приводит к снижению двигательной функции. Подобное наблюдается при учащении импульсации, когда медиатор не успевает разрушаться, что вызывает пессимальное торможение. Особенности передачи возбуждения в нервно-мышечном синапсе обусловлены свойствами химических синапсов: односторонняя передача возбуждения, синаптическая задержка возбуждения, зависимость величины постсинаптического потенциала от количества медиатора ( не подчинение закону «всё или ничего»), низкая лабильность, быстрая утомляемость. |