Практикум по эконометрике. Эконометрика Рассчитать выборочные дисперсии эмпирических коэффи. Методические указания по решению типовых практических задач, в том числе с помощью пакета прикладных программ ms excel
Скачать 2.55 Mb.
|
3. Автокорреляция3.1. Понятие автокорреляции. Методы ее обнаружения и устраненияАвтокорреляция (последовательная корреляция) определяется как корреляция между наблюдаемыми показателями, упорядоченными во времени (временные ряды) или в пространстве (перекрестные данные). Среди основных причин, вызывающих появление автокорреляции, можно выделить ошибки спецификации, инерцию в изменении экономических показателей, эффект паутины, сглаживание данных. Методы обнаружения автокорреляции остатков. 1. Критерий Дарбина-Уотсона. При статистическом анализе уравнения регрессии на начальном этапе чаще других проверяют выполнимость одной предпосылки, а именно, условия статистической независимости отклонений между собой. Поскольку значения εi теоретического уравнения регрессии Y = β0 + β1X + ε остаются неизвестными ввиду неопределенности истинных значений коэффициентов регрессии, то проверяется статистическая незначимость их оценок – отклонений еi, i = 1,2, …, n. При этом обычно проверяется их некоррелированность, являющаяся необходимым, но недостаточным условием независимости. Причем проверяется некоррелированность не любых, а только соседних величин еi. Соседними обычно считаются соседние во времени (при рассмотрении временных рядов) или по возрастанию объясняющей переменной X (в случае перекрестной выборки) значения еi. Для этих величин несложно рассчитать коэффициент корреляции, называемый в этом случае коэффициентом автокорреляции первого порядка, (3.1) При этом учитывается, что M(ei) = 0, i = 1,2, …, n. На практике для анализа коррелированности отклонений вместо коэффициента корреляции используют тесно с ним связанную статистику Дарбина-Уотсона DW, рассчитываемую по формуле: (3.2) Действительно, . Здесь сделано допущение, что при больших n выполняется соотношение: . Тогда . (3.3) Нетрудно заметить, что если при любом i, то и DW = 0. Если , то , и DW = 4. Во всех других случаях 0 Согласно формуле 3.1 статистика Дарбина-Уотсона тесно связана с выборочным коэффициентом корреляции : (3.4) Таким образом, и его значения могут указать на наличие либо отсутствие автокорреляции. Действительно, если (автокорреляция отсутствует), то . Если (положительная автокорреляция), то . Если (отрицательная автокорреляция), то . Для более точного определения, какое значение DW свидетельствует об отсутствии автокорреляции, а какое о ее наличии, была построена таблица критических точек распределения Дарбина-Уотсона. По ней для заданного уровня значимости , числа наблюдений n и количества объясняющих переменных m определяются два значения: dL – нижняя граница и dU – верхняя граница. Общая схема критерия Дарбина-Уотсона будет следующей: 1. По построенному эмпирическому уравнению регрессии определяются значения отклонений eiдля каждого наблюдения. 2. По формуле 3.2 рассчитывается статистика DW. 3. По таблице критических точек Дарбина-Уотсона определяются два числа dL и dU и осуществляют вывод по следующей схеме: 0 ≤ DW < dL – существует положительная автокорреляция, dL ≤ DW < dU – вывод о наличии автокорреляции не определен, dU ≤ DW < 4 – автокорреляция отсутствует, 4- dU ≤ DW < 4-dL – вывод о наличии автокорреляции не определен, 4-dL ≤ DW ≤ 4 – существует отрицательная автокорреляция. 2. Метод рядов. Этот метод достаточно прост: последовательно выписываются знаки отклонений ei. Например, (-----)(+++++++)(---)(++++)(-), т.е. 5 «-», 7 «+», 3 «-», 4 «+», 1 «-» при 20 наблюдениях. Ряд определяется как непрерывная последовательность одинаковых знаков. Количество знаков в ряду называется длиной ряда. Визуальное распределение знаков свидетельствует о неслучайном характере связей между отклонениями. Если рядов слишком мало по сравнению с количеством наблюдений n, то вполне вероятна положительная автокорреляция. Если же рядов слишком много, то вероятна отрицательная автокорреляция. Для более детального анализа предлагается следующая процедура. Пусть n – объем выборки; n1 – общее количество знаков «+» при n наблюдениях (количество положительных отклонений ei); n2 – общее количество знаков «-» при n наблюдениях (количество отрицательных отклонений ei); k – количество рядов. При достаточно большом количестве наблюдений (n1 >10, n2 >10) и отсутствии автокорреляции СВ k имеет асимптотически нормальное распределение с ; . Тогда, если , то гипотеза об отсутствии автокорреляции не отклоняется. При небольшом числе наблюдений (n1<20, n2<20) Свед и Эйзенхарт разработали таблицы критических значений количества рядов при n наблюдениях. Суть таблиц в следующем. На пересечении строки n1 и столбца n2 определяется нижнее k1 и верхнее k2 значения при уровне значимости = 0,05. Если k1 < k < k2, то говорят об отсутствии автокорреляции. Если k ≤ k1, то говорят о положительной автокорреляции остатков. Если k ≥ k2, то говорят об отрицательной автокорреляции остатков. |