Практикум по эконометрике. Эконометрика Рассчитать выборочные дисперсии эмпирических коэффи. Методические указания по решению типовых практических задач, в том числе с помощью пакета прикладных программ ms excel
Скачать 2.55 Mb.
|
4.3. Смягчение проблемы гетероскедастичности. Метод взвешенных наименьших квадратовГетероскедастичность не позволяет получить эффективные оценки коэффициентов уравнения регрессии, что приводит к необоснованным выводам относительно качества этих оценок. Поэтому при обнаружении гетероскедастичности возникает необходимость каких-то преобразований модели в целях ее устранения. Вид преобразований зависит от того, знаем мы поведение дисперсий отклонений или нет. Корректировка гетероскедастичности также является достаточно серьезной проблемой. Один из возможных методов устранения гетероскедастичности – это метод взвешенных наименьших квадратов (ВНК). Для его применения необходима определенная информация, либо обоснованные предположения о величине дисперсий отклонений . Например, может оказаться целесообразным предположить, что дисперсии отклонений i пропорциональны значениям xi (рис.4.3.1, а) или значениям (рис. 4.3.1, б) рис.4.3.1 Рассмотрим случай, когда дисперсии отклонений неизвестны и пропорциональны xi, т.е. . Тогда уравнение преобразуется делением его левой и правой частей на : где В случае, когда неизвестны и пропорциональны , в уравнении линейной регрессии разделим обе части на . Тогда Обозначим Тогда . Для этого уравнения уже выполнено условие гомоскедастичности. Методом наименьших квадратов находим оценки коэффициентов и возвращаемся к исходному уравнению . В случае, когда число факторов m > 1, исходное уравнение делится на переменную, которая в максимальной степени связана с i. 4.4. Решение типовых задачЗадача 4.4.1 На примере задачи 2.6.1, где m=2 проверим гипотезу об отсутствии гетероскедастичности в построенной модели по тесту Спирмена. Доверительная вероятность p = 95%. Решение: Заполним таблицу. Модули элементов четвертого столбца запишем в 5-й столбец. В 6-м, 7-м и 8-м столбцах ранжированы по возрастанию элементы 2-го, 3-го и 5-го столбцов соответственно. n = 10 наблюдений. Коэффициент ранговой корреляции =. По таблицам находим граничную точку = == 2,365. Статистика =. Таким образом , то на уровне значимости принимается гипотеза об отсутствии гетероскедастичности по фактору X1. В модели, содержащей несколько факторов, как уже было сказано, проверка гипотезы об отсутствии гетероскедастичности проводится с помощью t-статистики для каждого из них отдельно. Следовательно, определим наличие гетероскедастичности по фактору X2. Коэффициент ранговой корреляции =. По таблицам находим граничную точку = == 2,365. Статистика =. Таким образом , то на уровне значимости принимается гипотеза об отсутствии гетероскедастичности по фактору X2. Задача 4.4.2. Рассматривается регрессионная линейная модель с m=2 факторами. n = 30 наблюдений. Для первых и последних k=11 наблюдений суммы квадратов отклонений S1=20 и S3=45 соответственно. С помощью теста Голдфельда-Квандта проверим гипотезу об отсутствии гетероскедастичности. Доверительная вероятность p = 95%. Решение: = 1- p = 1 – 0,95 = 0,05. По F – таблицам Фишера находим граничную точку . Статистика F = =< 3,44. Таким образом, на уровне значимости 5% принимается гипотеза об отсутствии гетероскедастичности. 4.5. Упражнения и задачиЗадача 5.5.1 Рассматривается регрессионная линейная модель с m=2 факторами. n = 30 наблюдений. Для первых и последних k=11 наблюдений суммы квадратов отклонений S1=18 и S3=52 соответственно. С помощью теста Голдфельда-Квандта проверим гипотезу об отсутствии гетероскедастичности. Доверительная вероятность p = 99%. Задача 5.5.2 В задаче 2.7.7 определить наличие гетероскедастичности в построенной модели. 5. Мультиколлинеарность5.1. Понятие мультиколлинеарности. Способы ее обнаружения и методы устраненияЕще одной серьезной проблемой при построении моделей множественной линейной регрессии по МНК является мультиколлинеарность − линейная взаимосвязь двух или нескольких объясняющих переменных. Причем, если объясняющие переменные связаны строгой функциональной зависимостью, то говорят о совершенной мультиколлинеарности. На практике можно столкнуться с очень высокой (или близкой к ней) мультиколлинеарностью − сильной корреляционной зависимостью между объясняющими переменными. Причины мультиколлинеарности и способы ее устранения анализируются ниже. Устранение мультиколлинеарности возможно посредством исключения из корреляционной модели одного или нескольких линейно связанных факторных признаков или преобразования исходных факторных признаков в новые, укрупненные факторы. Вопрос о том, какой из факторов следует отбросить, решается на основе количественного и логического анализа изучаемого явления. Описание методов устранения или снижения уровня мультиколлинеарности
В настоящее время при построении корреляционных моделей исходят из условия нормальности многомерного закона распределения генеральной совокупности. Эти условия обеспечивают линейный характер связи между изучаемыми признаками, что делает правомерным использование в качестве показателей тесноты связи парного, частного коэффициентов корреляции и коэффициента множественной корреляции. Частные коэффициенты корреляции характеризуют связи признаков из совокупности признаков при условии, что все связи этих признаков с другими признаками закреплены на условно-постоянном (среднем) уровне. Частный коэффициент корреляции изменяется в пределах от -1 до +1. Если частный коэффициент корреляции равен ±1, то связь между двумя величинами функциональная, а равенство нулю свидетельствует о линейной независимости этих величин. |