Практикум по эконометрике. Эконометрика Рассчитать выборочные дисперсии эмпирических коэффи. Методические указания по решению типовых практических задач, в том числе с помощью пакета прикладных программ ms excel
Скачать 2.55 Mb.
|
2. Множественная регрессияМножественная регрессия представляет собой модель вида , где у — результативный признак, а х1, х2, х,…,xm — независимые или объясняющие переменные (признаки-факторы), i – случайная ошибка отклонения. Цель множественной регрессии — определить степень влияния каждого из факторов в отдельности и их совместное воздействие на результативный признак. Включаемые в модель множественной регрессии факторы должны объяснять вариацию независимой переменной. Как и в случае парной регрессии, для модели множественной регрессии с некоторым набором факторов рассчитывается множественный коэффициент детерминации, определяющий долю объясненной вариации результативного признака за счет факторов, входящих в модель. Остановимся на теоретической линейной модели множественной регрессии: где bi — коэффициенты регрессии, каждый из которых показывает, насколько единиц изменится у с изменением соответствующего признака х на единицу при условии, что остальные признаки не изменятся; — теоретическое значение, представляющее собой оценку ожидаемого значения у при фиксированных значениях переменных хm Как и в случае парной регрессии по любой конечной выборке нельзя точно получить вектор коэффициентов уравнения . Мы можем только рассчитать эмпирическое уравнение регрессии в форме: . В этом случае вектор является вектором оценки теоретического вектора , ei – оценка теоретического отклонения i. 2.1. Спецификация модели. Отбор факторов при построении уравнения множественной регрессииПостроение уравнения множественной регрессии начинается с решения вопроса о спецификации модели. Он включает в себя два круга вопросов: отбор факторов и выбор вида уравнения регрессии. Включение в уравнение множественной регрессии того или иного набора факторов связано прежде всего с представлением исследователя о природе взаимосвязи моделируемого показателя с другими экономическими явлениями. Факторы, включаемые во множественную регрессию, должны отвечать следующим требованиям. Они должны быть количественно измеримы. Если необходимо включить в модель качественный фактор, не имеющий количественного измерения, то ему нужно придать количественную определенность. Факторы не должны быть мультиколлинеарны и тем более находиться в точной функциональной связи. Включение в модель факторов с высокой мультиколлинеарностью, может привести к нежелательным последствиям – система нормальных уравнений может оказаться плохо обусловленной и повлечь за собой неустойчивость и ненадежность оценок коэффициентов регрессии. Если между факторами существует высокая корреляция, то нельзя определить их изолированное влияние на результативный показатель и параметры уравнения регрессии оказываются неинтерпретируемыми. Включаемые во множественную регрессию факторы должны объяснить вариацию независимой переменной. Если строится модель с набором факторов, то для нее рассчитывается показатель детерминации , который фиксирует долю объясненной вариации результативного признака за счет рассматриваемых в регрессии факторов. Влияние других, не учтенных в модели факторов, оценивается как с соответствующей остаточной дисперсией . При дополнительном включении в регрессию фактора коэффициент детерминации должен не убывать, а остаточная дисперсия не возрастать: и . Если же этого не происходит и данные показатели практически не отличаются друг от друга, то включаемый в анализ фактор не улучшает модель и практически является лишним фактором. Насыщение модели лишними факторами не только не снижает величину остаточной дисперсии и не увеличивает показатель детерминации, но и приводит к статистической незначимости параметров регрессии по критерию Стьюдента. Таким образом, хотя теоретически регрессионная модель позволяет учесть любое число факторов, практически в этом нет необходимости. Отбор факторов производится на основе качественного теоретико-экономического анализа. Однако теоретический анализ часто не позволяет однозначно ответить на вопрос о количественной взаимосвязи рассматриваемых признаков и целесообразности включения фактора в модель. Поэтому отбор факторов обычно осуществляется в две стадии: на первой подбираются факторы исходя из сущности проблемы; на второй – на основе матрицы показателей корреляции определяют статистики для параметров регрессии. Параметры уравнения множественной регрессии находят методом наименьших квадратов. |