Главная страница
Навигация по странице:

  • 3.4. ФОТОЭФФЕКТ. ЭФФЕКТ КОМПТОНА. ДАВЛЕНИЕ СВЕТА.

  • 3.5. ОСНОВНЫЕ ПОЛОЖЕНИЯ КВАНТОВОЙ МЕХАНИКИ. Корпускулярно-волновой дуа­

  • С квантовой точки

  • Квадрат амплитуды

  • Квантовые свойства света

  • Волновые свойства фотона проявляются в том, что для него нельзя

  • Волновые свойства микрочастиц

  • Луи де Бройль: если свет, который рассматривался как электромагнитная волна, может проявлять корпускулярные свойства, то и частицы вещества должны проявлять волновые свойства.

  • Физика лекции Юнусова (1). Минимальный курс физики. Составлен доц. Юнусовым Н. Б


    Скачать 3.72 Mb.
    НазваниеМинимальный курс физики. Составлен доц. Юнусовым Н. Б
    Дата18.04.2023
    Размер3.72 Mb.
    Формат файлаdoc
    Имя файлаФизика лекции Юнусова (1).doc
    ТипЗакон
    #1071701
    страница15 из 19
    1   ...   11   12   13   14   15   16   17   18   19


    Формула Планка для испускательной способности АЧТ:



    точно согласуется с данными опытов и объясняет все экспериментальные законы теплового излучения тел.

    3.4. ФОТОЭФФЕКТ. ЭФФЕКТ КОМПТОНА. ДАВЛЕНИЕ СВЕТА.

    Фотоэффект. Классическая теория, представляющая свет как электромагнитные волны, не смогла объяснить законы фотоэффекта и эффект Комптона.

    Явлением внешнего фотоэффекта назы­вается вырывание электронов с поверхности тела под действием света достаточно вы­сокой частоты. Экспериментально были установлены следующие закономерности внешнего фотоэффекта:

    1. Максимальная кинетическая энергия фотоэлектронов линейно растет с увеличением частоты света и не зависит от его интенсивности.

    2. Для каждого вещества существует т.н. «красная граница» фотоэффекта, т.е., наименьшая частота νМИН, при которой еще возможен фотоэффект.

    3. Число фотоэлектронов, вырываемых светом из катода за 1с, прямо пропорционально интенсивности света.

    4. Фотоэффект практически безынерционен, фототок возникает практически мгновенно после начала освещения катода при условии, что частота света ν ≥ νМИН .

    А.Эйнштейн пришел к выводу, что свет распространяется в пространстве и поглощается веществом в виде фотонов – квантов электромагнитного поля с энергией εf = hv.При взаимодействии с веществом фотон целиком передает свою энергию одному электрону. Эта энергия за­трачивается на работу выхода электрона из вещества АВЫХ и сообщение вылетевшему элект­рону кинетической энергии EКИН:

    (формула Эйнштейна).

    Это выражение объясняет все экспериментальные законы фотоэффекта. В частности, «красную границу» фотоэффекта, т.е., νМИН= АВЫХ/h. Кроме того, фототок прекращается, т.е. электроны не долетают до анода, при приложении между электродами т.н. задерживающей разности потенциалов .

    Эффект Комптона состоит в наблюдении у рассеянного на веществе рентгеновского излучения увеличения длины волны. Он не объясним с волновой точки зрения, т.к. согласно ей при прохождении электромагнитной волны через вещество возникает вторичное излучение с той же самой длиной волны. Этот эффект легко объясняется, если его рассматривать как упругое соударение двух частиц: фотона (f) и неподвижного электрона (e) (рассеяние фотона на электроне) и записать законы сохранения импульса и энергии:

    .

    Учтем, что энергия электрона после столкновения ; εf=hν=hcи εf=hν’=hc’ – энергии налетающего и рассеянного фотонов, соответственно; θ – угол рассеяния, т.е. угол между векторами импульсов фотонов . Так как электромагнитная волна, обладаю­щая энергией Е, имеет импульс р = Е/c(это вытекает из общего выражения СТО для энергии при m= 0), то та­кое же соотношение должно выполняться и для импульса фотона:pf= εf/c = hv/c=h/λ=ħ·k, где λ и k=2π/λ - длина волны и модуль волнового вектора , соответственно, ħ=h/2π – тоже постоянная Планка.

    Решая совместно уравнения получим:

    ,

    где т.н. комптоновская длина волны для электрона.

    Рассматривая свет как поток частиц-фотонов удалось также объяснить давление света на поверхность.

    Давление света. Фотоны, обладая импульсами, попадая на поверхность, ока­зывают на нее давление. Если п плотность фотонов, то на единицу поверхности в единицу времени попадает п·с фотонов. При поглощении каждый фотон сообщает поверхности импульс рf = hv/c, тогда все фотоны сообщат единице площади поверхности в единицу времени импульс это и есть давление):

    Р =(hv/c)· п·с= εf ·n.

    Но величина εf ·nравна энергии фотонов, за­ключенных в единице объема, т.е., объемной плотности электромагнитной энергии w. Таким образом, Р = wили с учетом того, что часть фотонов отражается: Р = w(1+ ρ), где ρ коэффициент отражения, равный 1 при полном отражении фотонов, и 0 при их полном поглощении. Полученный результат совпадает с выражением для давле­ния света в электромагнитной теории.

    3.5. ОСНОВНЫЕ ПОЛОЖЕНИЯ КВАНТОВОЙ МЕХАНИКИ.

    Корпускулярно-волновой дуа­лизм света. Т.о., в одних опытах (дифракция, интерференция, поляризация) свет проявляет волновые свойства, в других же (тепловое излучение, фотоэффект, эффект Комптона) он ведет себя как поток частиц-фотонов, но никогда не проявляет волновые и корпускулярные свойства одновременно. Волновая и квантовая теории света допол­няют друг друга. Двойственная природа света получила название корпускулярно-волнового дуа­лизма света и находит свое выражение в формулах, определяю­щих основные характеристики фотонов. Как видно из этих формул, корпускулярные характеристики фотона – энергия εf = hvиимпульс рf = hv/c=h/λ связаны с волновыми характеристиками света : его частотой ν и длиной волны λ.

    Боль­шая группа оптических явлений интерференция, дифракция, поляризация полностью объясняется в волновой оптике. Однако, если «перемещаться» от длинных волн в сторону более коротких, то вол­новые свойства света будут проявляться все слабее, уступая место более отчетливо проявляющимся квантовым свойствам. Это видно, например, из существования «красной границы» фотоэффекта и такой же границы для фотохимических реакций.

    Р ассмотрим связь волновых и квантовых свойств света на примере прохождения света через щель в непрозрачном экране (рис.). Предположим, что параллель­ный пучок монохроматических световых лучей проходит через щель АВ вдоль оси ординат. На экране CD, распо­ложенном за щелью, возникает дифракционная картина. В каждую точку экрана х попадает плоская гармоническая волна : E(x,t)=E0·exp(-i·k·x) · exp(-i·ω·t)= E(x) · exp(-i·ω·t) и наблюдается определенная освещенность, пропор­циональная интенсивности I(x) вэтой точке. На рис. справа изображено распределение интенсивности света по экрану, пропорциональное квадрату амплитуды Е(х) световой волны I(x)

    E(x) 2.

    С квантовой точки зрения образование на эк­ране дифракционной картины означает, что при прохождении све­та через щель происходит перераспределениефотонов в пространстве. В результате этого в разные точки экрана попадает различноечисло фотонов. Освещенность экрана в данной точке будет тем больше, чем большей будет суммарная энергия фотонов, попадающих за еди­ницу времени в данную точку. Эта энергия, в свою очередь, пропорциональна числу п(x) фотонов, доставивших эту энергию. Таким образом, I(x) п(x).

    Из сказанного следует, что E(x) 2п(x).Квадрат амплитуды световой волны в какой-либо точке пространства пропорционален числу фотонов, попадающих в эту точку.Иными словами, квадрат амплитуды световой волны в данной точке пространства является мерой вероятности попадания фотонов в эту точку.Таким образом, волновые и квантовые свойства света не исключают, а, наоборот, взаимно дополняют друг друга. Квантовые свойства света обусловлены тем, что энергия, импульс и масса излучения сосредоточены в частицах фотонах. Вероятность нахождения фотонов в различных точках пространства опре­деляется волновыми свойствами света – амплитудой световой волны (квадратом ее модуля).

    Далее было установлено, что волновые свойства присущи не только совокупности большого числа одновременно летящих фотонов. Каждый отдельный фотон обладает волновыми свойствами.Волновые свойства фотона проявляются в том, что для него нельзя точно указать, в какую именноточку экрана он попадет после про­хождения щели. Можно говорить лишь о вероятности попадания каждого фотонав ту или иную точку экрана.

    Такое истолкование связи между волновыми и квантовыми свой­ствами света сыграло выдающуюся роль в развитии современной физики.
    Волновые свойства микрочастиц. Корпускулярно-волновой дуализм присущ не только свету, но и частицам вещества. Эту идею высказал, исходя из соображений симметрии, Луи де Бройль: если свет, который рассматривался как электромагнитная волна, может проявлять корпускулярные свойства, то и частицы вещества должны проявлять волновые свойства.

    Согласно этой идее, импульс частицы с массой mи скоростью υ равен р = , а с другой стороны, он равен p=h/λ. Следо­вательно, движущейся частице можно поставить в соответствие волну с длиной: λБ=h/p= h/.

    Величину λБ называют дебройлевской дли­ной волны частицы. Экспериментально волно­вые свойства микрочастиц были обнаружены в опытах по дифракции электронов на кристаллах.

    Наличие волновых свойств у частиц вносит ограничения в применимости к ним классиче­ской механики, согласно которой час­тица в любой момент времени занимает опре­деленное положение в пространстве и обладает определенным импульсом.

    Когда проводится какое-либо измерение, его результат содержит некоторую неопределен­ность, обусловленную двумя факторами: корпускулярно-волновым дуализмом и неизбеж­ным взаимодействием наблюдаемого объекта с регистрирующим прибором, приводящим к изменению состояния объекта. Поэтому сущест­вует предел, ограничивающий точность измерений. Этот предел не зависит от степени совершенства измерительного прибо­ра, а присущ самой природе вещей. Это и есть принцип неопределенностей Гейзенберга.

    Количественные соотношения, выражающие этот принцип для конкретных динамических пе­ременных, называются соотношениями неопре­деленностей. Наиболее важными являются два из них:

    .

    Первое соотношение утверждает, что нельзя измерить одновременно с абсолютной точностью положение (координату) и проекцию импульса микрочастицы на ту же ось. Чем точнее мы пытаемся определить положение объекта, т.е. чем меньше Δх, тем больше будет неопределенность импульса Δрx . Этот вывод можно понять из следующих рассуждений: пусть мы хотим как можно точнее узнать положение микрочастицы (Δх→0 ). Для этого мы должны использовать фотоны с малой длиной волны λ (именно λ определяет точность измерения положения ∆х) и, соответственно, большим импульсом рf = h/λ. В результате такого соударения двух частиц измеряемая частица приобретает непредсказуемый импульс. Если же мы попытаемся точно измерить проекцию импуль­са, то большой окажется неопределенность в по­ложении объекта. Принцип неопределенностей в то же время не запрещает точно определить что-то одно: либо положение, либо импульс. Можно так­же с абсолютной точностью измерить координату и проекции импульса на другие оси. Согласно этому соотношению неопределенностей: а) объяснена устойчивость атома; при гипотетическом падении электрона на ядро неопределенность положения электрона уменьшилась бы на 5 порядков с 10 –10 м (размер атома) до 10 –15 м (размер ядра). На 5 порядков соответственно увеличилась бы неопределенность импульса электрона и он, получив бы такую энергию, не смог бы удержаться в ядре; б) невозможно определить траекторию движения микрочастицы (для этого необходимо знать в каждый момент времени абсолютно точно и координату и импульс частицы);
    1   ...   11   12   13   14   15   16   17   18   19


    написать администратору сайта