Главная страница
Навигация по странице:

  • 3.4.5. Мультиферментные комплексы повышают скорость клеточного метаболизма [36]

  • 3.4.6. Внутриклеточные мембраны ускоряют реакции, лимитируемые диффузией [37]

  • 3.4.8. Аллостерические белки участвуют в регуляции метаболизма [39] Аллостерические белки участвуют в регуляции по принципу обратной связи

  • (регуляторном центре).

  • 3.4.9. Аллостерические белки совершенно необходимы для клеточной сигнализации [40]

  • 3.4.10. Белки можно заставить изменять конформацию [40, 41]

  • Молекулярная биология клетки. Том 1. Молекулярная биология клетки 2Molecular Bruce Alberts, Dennis Bray,Biology


    Скачать 25.6 Mb.
    НазваниеМолекулярная биология клетки 2Molecular Bruce Alberts, Dennis Bray,Biology
    АнкорМолекулярная биология клетки. Том 1.pdf
    Дата22.04.2017
    Размер25.6 Mb.
    Формат файлаpdf
    Имя файлаМолекулярная биология клетки. Том 1.pdf
    ТипДокументы
    #5292
    страница21 из 79
    1   ...   17   18   19   20   21   22   23   24   ...   79
    Рис. 3-54. При увеличении концентрации субстрата скорость ферментативной реакции V увеличивается до тех пор, пока не достигнет максимального значения Vmax. Происходит это при такой концентрации субстрата, при которой уже не остается незанятых молекул фермента, и скорость реакции лимитируется скоростью каталитического процесса на поверхности фермента. Для большинства ферментов концентрация субстрата, при которой скорость реакции составляет половину максимальной К
    м
    , отражает прочность связывания субстрата с ферментом. Большие значения К
    м
    соответствуют слабому связыванию, и наоборот.

    160
    3.4.4. Многие ферменты заставляют реакции протекать преимущественно в одном направлении, сопрягая их с
    гидролизом АТР [35].
    Живая клетка представляет собой далекую от равновесия химическую систему: продукт каждого фермента обычно быстро расходуется, так как используется в качестве субстрата другим ферментом данного метаболического пути. Еще более важно, что многие из уже описанных в гл.
    2 ферментативных реакций сопряжены с расщеплением АТР на ADP и неорганический фосфат (см. разд. 2.4.2). Чтобы это оказалось, возможным, пул АТР в свою очередь должен поддерживаться на уровне, далеком от равновесия, так чтобы отношение концентрации АТР к концентрации продуктов его гидролиза было высоким. Таким образом, пул АТР служит «аккумулятором», поддерживающим постоянный перенос в клетке энергии и атомов по метаболическим путям, определяемым наличными ферментами. Приближение живой системы к химическому равновесию равнозначно ее распаду и смерти.
    3.4.5. Мультиферментные комплексы повышают скорость клеточного метаболизма [36]
    Способность ферментов ускорять химические реакции является решающей для поддержания жизни. В самом деле, клетка должна сопротивляться неизбежному процессу распада, что приводит ее в состояние, далекое от химического равновесия. Если бы скорость ключевых реакций не была выше скорости их обратных реакций, клетка быстро бы погибла. Представление о скорости метаболизма можно получить на основании того факта, что пул АТР типичной клетки млекопитающего за 1-2 мин полностью обновляется (т.е. все молекулы расщепляются и заменяются вновь синтезированными). Значит, за одну секунду каждая клетка использует 10 7
    молекул АТР, а весь человеческий организм, таким образом, перерабатывает около грамма АТР в минуту.
    Такая высокая скорость клеточных реакций обеспечивается эффективностью ферментных катализаторов. Эффективность многих ключевых ферментов столь высока, что ее дальнейшее увеличение бессмысленно, поскольку катализируемые этими ферментами реакции лимитирует скорость столкновений фермента с субстратами: другими словами, скорость реакций лимитируется диффузией.
    Если реакция лимитируется диффузией, то ее скорость будет зависеть от концентрации фермента и субстрата. Поэтому для очень большой скорости ряда последовательных реакций необходимо, чтобы каждый промежуточный продукт и все ферменты присутствовали в высоких концентрациях. Но огромное количество одновременно протекающих в клетке различных реакций накладывает ограничение на достижимые концентрации реагентов. На деле большинство метаболитов присутствует в микромолярных концентрациях (10
    -6
    М), а клеточная концентрация большинства ферментов значительно меньше. Как же в таком случае возможно поддерживать очень высокие скорости метаболизма?
    Ответ кроется в пространственной организации клеточных компонентов. Скорость реакций можно повысить, не увеличивая концентрации субстратов, если собрать различные участвующие в последовательных реакциях ферменты в большой мультиферментный
    комплекс. При таком способе организации продукт фермента А переходит непосредственно к ферменту Б и т. д. до конечного продукта, причем лимитирующая стадия диффузии отсутствует даже при очень низких внутриклеточных концентрациях промежуточных соединений. Подобные ферментные комплексы встречаются очень часто. Структура одного из них - пи-

    161
    Рис. 3-55. Большое увеличение концентрации взаимодействующих молекул может быть достигнуто заключением их в ограниченный мембраной компартмент в эукариотической клетке. руват-дегидрогеназы - была показана на рис. 2-40. Эти комплексы вовлечены почти во все аспекты метаболизма, включая центральные генетические процессы синтеза ДНК, РНК и белка. На самом деле возможно, что какое-то незначительное число ферментов эукариотических клеток свободно диффундируют в растворе, однако большинство из них, по-видимому, смогло развить центры связывания, которые концентрируют их с другими ферментами сходных функций в определенных участках клетки, повышая таким образом скорость и эффективность катализируемых ими реакций.
    Клетки имеют и другой способ увеличения скорости метаболических реакций, связанный с внутриклеточными мембранами.
    3.4.6. Внутриклеточные мембраны ускоряют реакции, лимитируемые диффузией [37]
    Обширная сеть внутриклеточных мембран эукариотических клеток по крайней мере двумя способами ускоряет реакции, скорость которых в отсутствие мембран зависела бы от скорости диффузии. Во-первых, мембраны способны изолировать ряд субстратов и действующие на них ферменты в одном компартменте, например, в эндоплазматическом ретикулуме или ядре. Если принять, что каждый такой компартмент занимает около 10% объема клетки, то концентрация реагентов в компартменте может быть в 10 раз выше, чем в такой же клетке без компартментализации (рис. 3-55).
    Второй способ, которым мембраны могут увеличить скорость реакции, состоит в том, чтобы ограничить диффузию реагентов только двумя измерениями поверхности самой мембраны. Ферменты и их субстраты, ограниченные двумя измерениями, будут соударяться друг с другом значительно чаще, чем при трехмерной диффузии, даже несмотря на то что скорость диффузии молекул на мембране примерно в 100 раз ниже, чем в водном растворе (рис. 3-56). Такой процесс, видимо, используется в случае ферментов и субстратов, участвующих в синтезе липидных молекул; в этом случае субстраты растворены непосредственно в липидном бислое. Возможно, он также используется для ускорения многих других реакций, в которых участвуют связанные с мембранами ферменты.
    Было обнаружено, что подобный механизм «плененной диффузии» увеличивает скорость нахождения некоторыми регуляторными белками геноспецифических последовательностей ДНК, с которыми они связываются, непосредственно на хромосоме. Такие белки имеют слабое сродство ко всем участкам ДНК. Они постоянно наталкиваются на хромосому, «скользят» по ней и таким способом сканируют всю длину ДНК до обнаружения своих специфических центров связывания.
    Рис. 3-56. Скорости реакции возрастают, когда из-за наличия мембран трехмерная диффузия заменяется двумерной. Здесь показан результат серии теоретических расчетов. А. При диффузии в отсутствие мембран средней молекуле понадобится около 30 мин, чтобы найти любую единичную
    «мишень» внутри сферической частицы диаметром 10 мкм. Б. Если мишень фиксирована на мембране, то время диффузии значительно уменьшается. Средней молекуле требуется около 1 с, чтобы попасть на большую внутреннюю мембрану и около 2 мин, чтобы найти на мембране мишень. В. Если уменьшить площадь внутренней мембраны в 10 раз, то молекуле потребуется 10 с, чтобы попасть на мембрану, но поиск мишени теперь займет приблизительно в 10 раз меньше времени, чем в случае Б. Таким образом, эффективность соударений в случае В почти в 100 раз выше, чем в А.

    162
    3.4.7. Молекулы белка способны обратимо изменять свою форму [38]
    В общем случае естественный отбор способствовал эволюции полипептидов, которые приобретали специфические стабильные конформации. Однако некоторые белковые молекулы, возможно даже большинство из них, имеют две или более слегка различающиеся конформации и, переходя обратимо от одной к другой, могут менять свою функцию. В таком аллостерическом белке могут, например, образоваться несколько различных наборов водородных связей с примерно одинаковой энергией, причем каждый такой набор связей требует разных пространственных взаимоотношений между двумя участками полипептидной цепи. Альтернативные стабилизированные конформации, как правило, разделяются нестабильными промежуточными состояниями, так что молекула «мечется» между стабильными конформациями.
    Каждая дискретная конформация аллостерического белка имеет несколько отличную от других поверхность и, следовательно, разную способность взаимодействовать с другими молекулами. Часто лишь одна из двух конформаций имеет высокое сродство к конкретному лиганду; в этом случае наличие или отсутствие лиганда определяет принимаемую белком конформацию (рис. 3-57). В тех случаях, когда с различными участками поверхности одного белка могут связываться два различных лиганда, изменение концентрации одного из них меняет сродство белка к другому. Подобные аллостерические изменения играют ведущую роль в регуляции многих биологических процессов.
    3.4.8. Аллостерические белки участвуют в регуляции метаболизма [39]
    Аллостерические белки участвуют в регуляции по принципу обратной
    связи, которая контролирует поток веществ через метаболические пути (см. разд. 2.5). Например, ферменты, действующие на ранних стадиях какого-либо метаболического пути, почти всегда являются аллостерическими белками, способными существовать в двух альтернативных конформациях. Одна из них - это активная конформация. Белок в активной конформаций связывает в активном центре субстрат и превращает его в следующий метаболит данного пути. Другая конформация - неактивная. Белок в этой конформаций прочно связывает конечный продукт того же самого пути в специальном участке поверхности (регуляторном центре). По мере накопления конечного продукта, фермент связывается и переходит в неактивную конформацию (отри-
    Рис. 3-57. Каждая конформация аллостерического белка может быть стабилизирована предпочтительным связыванием лиганда. Прочное связывание лиганда лишь с одной из возможных конформаций аллостерического белка переводит белок в эту конформацию. Таким образом, высокая концентрация лиганда X будет активировать представленный белок, а высокая концентрация лиганда Y инактивировать его.

    163
    Рис. 3-58. Схема, показывающая как конформация одной субъединицы влияет на конформацию соседних субъединиц в симметричном белке, состоящем из идентичных аллостерических субъединиц. Связывание одной регуляторной молекулы лиганда с одной субъединицей изменяет конформацию этой субъединицы, как показано на рис. 3-57. Поскольку такое изменение способствует возникновению тесносвязанной конформации, то связывание первой молекулы лиганда увеличивает сродство других субъединиц к связыванию того же лиганда. Таким образом, фермент может активироваться относительно малым увеличением концентрации регуляторного лиганда (см. рис. 3-59).
    цательная обратная связь), которая становится стабильной, в силу того что продукт может связать фермент только в этой форме. В других случаях фермент, участвующий в метаболическом пути, активируется аллостерическим переходом, который происходит при недостатке в клетке продукта этого пути, когда фермент связывает накапливающийся лиганд. В этом случае лиганд связывается с активной формой фермента (положительная
    обратная связь) и такое связывание требует перехода из неактивной в активную конформацию (см. рис. 3-57). Результатом регуляции посредством положительной и отрицательной обратной связи является то, что данный продукт синтезируется в клетке лишь тогда, когда он необходим, и таким путем поддерживаются относительно постоянные концентрации всех метаболитов.
    3.4.9. Аллостерические белки совершенно необходимы для клеточной сигнализации [40]
    Мы уже отметили, что аллостерические белки (например, те, которые участвуют в регуляции по принципу обратной связи) имеют по меньшей мере два центра связывания - один для субстрата и один или более для регуляторных лигандов. Эти центры занимают различные участки поверхности белка и узнаваемые лиганды могут быть совершенно различными. Поскольку связывание одного лиганда с соответствующим центром может повлиять на другой центр изменением конформации белка, то любой метаболический процесс в клетке может регулироваться продуктом любой другой реакции независимо от его химической природы. Например, синтез и распад гликогена в мышечных клетках регулируются концентрацией связанного Са
    2
    +
    с помощью аллостерических ферментов, активность которых меняется при изменении концентрации Са
    2+
    в цитозоле (см. разд. 12.4.4).
    Аллостерические белки особенно тонко реагируют на сигналы, если, как это часто случается, они работают совместно как идентичные субъединицы в симметричном ансамбле. В таких белках изменение конформации одной субъединицы, вызванное связыванием лиганда, может помочь соседним субъединицам связать тот же самый лиганд (рис. 3-58). В результате относительно малое изменение концентрации лиганда в окружающей среде переключает переход всего ансамбля из неактивной конформации в активную или наоборот. Если лиганд связывается преимущественно с активной конформацией каждой субъединицы фермента, то это приведет к резкому увеличению ферментативной активности, поскольку концентрация лиганда падает (рис. 3-59). Структура одного хорошо изученного аллостерического фермента аспартат-транскарбамоилазы показана на рис. 3-60.
    3.4.10. Белки можно заставить изменять конформацию [40, 41]
    Белки обеспечивают направленное течение всех происходящих в клетке процессов. Как же можно заставить молекулы самих белков двигаться упорядоченным образом? Прежде чем ответить на этот вопрос, мы должны рассмотреть, каким образом клетка контролирует изменения конформации аллостерических белков. Рассмотрим аллостерический белок, способный принимать две альтернативные конформации - неактивную низкоэнергетическую К и активную высокоэнергетическую К*, энергия которых различается на 4,3 ккал/моль (что приблизительно соответствует энергии образования на поверхности белка четырех водородных связей). При такой разнице энергий вероятность концентрации К будет в 1000 раз превышать вероятность конформации К* (табл. 3-3), и белок почти всегда будет находится в неактивной

    164
    Рис. 3-59. При увеличении концентрации лиганда активность изображенного на рис. 3-58 аллостерического фермента, состоящего из нескольких субъединиц, будет выражаться «сигмоидной» кривой (цветная кривая) благодаря кооперативному связыванию молекул лиганда. Напротив, активация аллостерического фермента, состоящего из одной субъединицы, описывается кривой простого насыщения (черная кривая). Пунктирная
    прямая показывает максимальный уровень активности, достигаемый при очень высоких концентрациях лиганда, который будет одинаковым в обоих случаях. конформации. Есть, однако, два способа заставить белок принять активную конформацию.
    Связывание низкомолекулярного лиганда, образно выражаясь, «перетаскивает» молекулу в активную конформацию К*. Если лиганд связывается только с К*, то энергия этой конформации избирательно уменьшается, а энергия К остается неизменной. Поскольку лиганд связывается с белком достаточно слабо (большая часть энергии связывания уходит на удержание подходящей для лиганда формы белка), он с легкостью диссоциирует, и поэтому такое изменение конформации белка полностью обратимо.
    Другой способ состоит в использовании дополнительной химической энергии для того, чтобы «толкнуть» белок на изменение конформации К на активную конформацию К*. В этом случае смена конформации почти необратима. Обычно происходит ковалентный перенос фосфата с молекулы АТР на остатки серина, треонина или тирозина белка с образованием ковалентной связи. Предположим, что эта реакция фосфорилирования, направляемая благоприятным гидролизом АТР в ADP создает невыгодное для конформации К отталкивание зарядов. Если это отталкивание уменьшено в активной форме К*, то переход из К в К* будет сильно облегчаться фосфорилированием (рис. 3-61). Регулируемое фосфорилирование, активирующее или подавляющее функционирование специфических белков, - обычное явление в эукариотических клетках (см. разд. 3.2.3); в самом деле, приблизительно одна
    Рис. 3-60.
    Фермент аспартат-транскарбамоилаза выключается в ответ на связывание цитозинтрифосфата (СТР). Ферментный комплекс состоит из шести каталитических субъединиц и шести регуляторных субъединиц. Структура его неактивной и активной форм определена методом рентгеноструктурного анализа. Каждая регуляторная субъединица может связывать одну молекулу СТР, являющегося одним из конечных продуктов реакции. Эта реакция начинается, когда фермент катализирует образование карбамоиласпартата из карбамоилфосфата и аспарагиновой кислоты. Посредством такой регуляции по типу отрицательной обратной связи фермент защищен от производства большего количества СТР, чем это необходимо клетке. (По данным К. L. Krause, К. W. Volz and W.N. Lipscomb Proc. Natl. Acad. Sci. USA 82: 1643 1647, 1985.)

    165
    Рис. 3-61.
    Фосфорилирование с помощью АТР может активировать аллостерический белок. На этом примере неактивная конформация нефосфорилированного белка А в 1000 раз энергетически выгодней из-за разницы свободной энергии 4,3 ккал/моль (см. табл. 3-3). Когда же он фосфорилирован, активная конформация белка Б выгоднее в 100 раз (2,8 ккал/моль), поскольку фосфорилирование создает энергетически невыгодное отталкивание зарядов; этот эффект частично снимается переходом в активную информацию К
    *
    . Следовательно, фосфорилирование
    «толкает» фермент в активную конформацию. В другом случае фосфорилирование может приводить к притяжению зарядов, которое сближает две удаленные части аллостерического белка. десятая различных белков клеток млекопитающих содержит ковалентно связанный фосфат.
    Иногда при добавлении ADP к таким фосфорилированным белкам in vitro наблюдается синтез АТР. Эти данные непосредственно показывают, что существенная часть энергии гидролиза АТР была запасена в напряженной конформации, принимаемой белком при его фосфорилировании. Как же, однако, происходящие с потреблением энергии изменения конформации белка вызывают движения и производят в клетке полезную работу?
    1   ...   17   18   19   20   21   22   23   24   ...   79


    написать администратору сайта