Молекулярная биология клетки. Том 1. Молекулярная биология клетки 2Molecular Bruce Alberts, Dennis Bray,Biology
Скачать 25.6 Mb.
|
460 Всем животным и большинству микроорганизмов необходимо все время получать из окружающей среды большие количества органических веществ. Эти вещества доставляют углеродные остовы для биосинтезов и метаболическую энергию для всех клеточных процессов. Полагают, что первые организмы древней Земли располагали избытком органических соединений, образовавшихся в результате геохимических процессов (см. разд. 1.1.1). Однако большая часть этих соединений была уже использована миллиарды лет назад. С тех времен почти все органические материалы, необходимые для живых клеток, производятся фотосинтезирующими организмами, в том числе разного рода фотосинтезирующими бактериями. Эволюционно наиболее продвинутые из таких бактерий - цианобактерии - обладают минимальными потребностями в питательных веществах. Для превращения атмосферной двуокиси углерода (СО 2 ) в органические соединения они используют солнечную энергию и воду, служащую источником электронов. Кроме того, при расщеплении воды [при реакции nН 2 О + nСО 2 свет n(СН 2 О) n + nО 2 ] они выделяют в атмосферу кислород, необходимый для окислительного фосфорилирования. Как мы объясним позже, вероятно, именно эволюция цианобактерии из более примитивных фотосинтезирующих бактерий сделала возможным развитие первых аэробных форм жизни. У растений, которые появились позднее, фотосинтез протекает в специализированных внутриклеточных органеллах - хлоропластах. Однако хлоропласты доставляют энергию для метаболизма только в дневные часы; ночью они прекращают синтез высокоэнергетических метаболитов, и в это время суток растения получают АТР в результате деятельности митохондрий, которые у них очень сходны с митохондриями животных клеток. Основываясь главным образом на биохимических данных, полагают, что хлоропласты - это потомки цианобактерии, которые захватывались эукариотами путем эндоцитоза и перешли к симбиозу с ними. Так же объясняют и происхождение митохондрий. Согласно этой теории, многочисленные различия между хлоропластами и митохондриями обусловлены отчасти их происхождением от разных бактериальных Рис. 7-38. Хлоропласты содержат три мембраны - наружную, внутреннюю и тилакоидную, которые делят органеллу на три внутренних компартмента: межмембранное пространство, строму и тилакоидное пространство. В тилакоидной мембране находятся все энергетические системы хлоропласта. На электронной микрофотографии эти мембраны выглядят разбитыми на отдельные фрагменты, имеющие вид уплощенных пузырьков (см. рис. 7-39), но в хлоропласте они, вероятно, соединены в одну мембрану, образующую многочисленные складки. Как видно из рисунка, отдельные тилакоиды связаны между собой в стопкообразные структуры, называемые гранами. 461 предков, а отчасти последующей эволюционной дивергенцией. Тем не менее фундаментальные механизмы синтеза АТР в хлоропластах и митохондриях очень сходны, хотя в первых он идет за счет энергии света, а во вторых - за счет энергии, доставляемой дыханием. 7.3.1. Хлоропласты сходны с митохондриями, но имеют один дополнительный компартмент Хлоропласты, так же как и митохондрии, используют для преобразования энергии хемиосмотический механизм, и в основе организации тех и других органелл лежат одни и те же принципы (рис. 7-38 и 7-39). Хлоропласты тоже обладают высокопроницаемой наружной мембраной и гораздо менее проницаемой внутренней, в которую встроены специальные транспортные белки, и эти две мембраны разделены узким межмембранным пространством. Внутренняя мембрана окружает большую центральную область - так называемую строму, представляющую собой аналог митохондриального матрикса и содержащую разнообразные ферменты, рибосомы, РНК и ДНК. Однако есть и существенное отличие. Внутренняя мембрана хлоропластов не образует крист и не содержит в себе цепи переноса электронов. Фотосинтезирующая поглощающая свет система, электрон-транспортная цепь и АТР-синтетаза находятся в третьей мембране, Рис. 7-39. Электронные микрофотографии хлоропластов. А. Клетка из листа пшеницы, в которой тонкий слой цитоплазмы, содержащей хлоропласты, окружает большую вакуоль. Б. Тонкий срез одного хлоропласта; видны зерна крахмала и жировые капельки, накапливающиеся в строме в результате биосинтеза. В. Граны при большом увеличении: видна тилакоидная мембрана, образующая стопки. (С любезного разрешения К. Plaskitt.) 462 Рис. 7-40. Сравнение структуры митохондрии и хлоропласта. Обычно хлоропласт намного больше и содержит тилакоидную мембрану и тилакоидное пространство. Внутренняя мембрана митохондрий образует кристы. образующей группу уплощенных дисковидных мешочков - тилакоидов (рис. 7-38). Как полагают, внутренние полости тилакоидов сообщаются между собой, образуя третий, внутренний компартмент хлоропласта, называемый тилакоидным пространством. Это пространство отделено от стромы тилакоидной мембраной. На рис. 7-40 показаны черты сходства и различия в строении митохондрий и хлоропластов. В общем виде хлоропласт можно представить как сильно увеличенную митохондрию, кристы которой образовали в матриксе цепочки связанных между собой субмитохондриальных частиц. В хлоропластах сферическая часть АТР-синтетазы, где образуется АТР, выступает из мембраны тилакоида в область стромы, точно так же как в митохондриях она выступает из внутренней мембраны в сторону матрикса (см. рис. 7-51). 7.3.2. В хлоропластах осуществляются две уникальные реакции: образование АТР и NADPH за счет энергии света и превращение СО 2 в углеводы [26] Разнообразные реакции, протекающие при фотосинтезе, можно разделить на две большие группы. 1. В реакциях фотосинтетического переноса электронов (иногда называемых световыми реакциями) лучистая энергия возбуждает электрон в молекуле хлорофилла, что делает возможным перенос электрона по окислительной цепи в тилакоидной мембране, аналогичный переносу его по дыхательной цепи во внутренней мембране митохондрий. В результате такого транспорта электронов происходит перекачивание протонов через тилакоидную мембрану, и создающаяся протонодвижущая сила доставляет энергию для синтеза АТР в строме. В то же время высокоэнергетические электроны, образуемые в окислительной цепи, восстанавливают NADP + до NADPH. Источником электронов, участвующих в этом процессе, служит окисление воды, при котором выделяется О 2 2. В реакциях фиксации углерода (называемых иногда темновыми реакциями) происходит превращение СО 2 в углеводы, причем в качестве источника энергии и восстанавливающего агента используются соответственно АТР и NADPH, синтезированные в реакциях фотосинтетического переноса электронов. В результате этих реакций, начинающихся в строме хлоропласта и продолжающихся в цитозоле, в листьях образуется сахароза, откуда она доставляется к другим частям растения, где служит источником энергии для роста и используется при синтезе органических молекул. 463 Рис. 7-41. Реакции фотосинтеза, протекающие в хлоропластах, можно подразделить на электрон-транспортирующие реакции и реакции фиксации углерода. В первой группе реакций окисляется вода и выделяется О 2 , а во второй группе ассимилируется СО 2 и образуются органические молекулы. Таким образом, освобождение молекулярного кислорода (требующее прямого участия лучистой энергии) и превращение СО 2 в углеводы (не требующее прямого участия света) - это два отдельных процесса (рис. 7-41). Но, как мы увидим позднее, эти два процесса соединены тонким механизмом обратных связей, что необходимо для регулирования процессов биосинтеза. Например, образование АТР и NADPH в тилакоидных мембранах меняется в зависимости от потребности клетки в этих молекулах, а некоторые ферменты хлоропластов, необходимые для фиксации углерода, инактивируются в темноте и восстанавливают свою активность под влиянием электронтранспортных процессов, стимулируемых светом. 7.3.3. Фиксацию углерода катализирует рибулозобисфосфаткарбоксилаза [28] В этой главе мы уже познакомились с тем, как клетки используют большое количество энергии, выделяющейся при окислении углеводов до СО 2 и Н 2 О, для синтеза АТР. Из этого должно быть ясно, что обратный процесс - образование углеводов из СО 2 и Н 2 О требует значительных затрат энергии и может происходить только при сопряжении с другими реакциями, при которых, наоборот, много энергии выделяется. На рис. 7-42 приведена центральная реакция превращения неорганического углерода в органический: СО 2 (из атмосферы) реагирует с водой и пятиуглеродным соединением рибулозо-1,5-бисфосфатом, и в результате образуются две молекулы трехуглеродного соединения 3- фосфоглицерата. Эту реакцию, открытую в 1948 г., катализирует в строме хлоропласта большой (мол. масса 500000) фермент, называемый рибулозобисфосфат-карбоксилазой. Так как этот фермент работает очень медленно (одна его молекула за секунду обрабатывает примерно 3 молекулы субстрата, тогда как другие ферменты - обычно около 1000 молекул), требуется очень много копий рибулозобисфосфат-карбоксилазы. Этот фермент часто составляет более 50% всего белка хлоропластов, и утверждают, что по общей массе это самый распространенный белок в мире. 7.3.4. В цикле фиксации углерода на одну связанную молекулу СО 2 затрачиваются три молекулы АТР и две молекулы NADPH [29] Хотя собственно реакция фиксации углерода не требует затраты энергии, для ее протекания нужен непрерывный приток высокоэнергетического соединения-рибулозо-1,5-бисфосфата, с которым связывается СО 2 (рис. 7-42). Работа по изучению сложного пути регенерации Рис. 7-42. Начальная реакция, в которой двуокись углерода превращается в органический углерод. Эту реакцию катализирует в строме хлоропласта содержащийся там в очень большом количестве фермент рибулозобисфосфат-карбоксилаза, и в результате образуется 3-фосфоглицерат, который является также и важнейшим промежуточным продуктом гликолиза (см. рис. 2-20). В случае если тот же фермент присоединяет кислород, а не СО 2 (см. разд. 7.3.5), два атома углерода, выделенные цветом, используются для образования фосфогликолата. 464 Рис. 7-43. Цикл фиксации углерода, в котором из СО 2 и Н 2 О образуются органические молекулы. Для упрощения схемы многие промежуточные продукты на пути от глице-ральдегид-3-фосфата к рибулозо-5-фосфату опущены. Участие воды в цикле также не показано. рибулозо-1,5-бисфосфата явилась одним из самых ранних и наиболее успешных применений радиоизотопов в биохимии. Как показано на рис. 7-43, при участии трех молекул СО 2 , вступивших в реакцию, катализируемую рибулозобисфосфат-карбоксилазой, образуется шесть молекул 3- фосфоглицерата, в совокупности содержащих 6·3 = 18 атомов углерода: 3 от СО 2 и 15 от рибулозо-1,5-бисфосфата. Затем эти 18 атомов углерода проходят цикл реакций, регенерирующих 3 молекулы рибулозо-1,5-бисфосфата (содержащие 3·5 = 15 атомов С), использованные в начале цикла. В конечном итоге прибавляется одна молекула глицеральдегид-3-фосфата (3 углеродных атома). В этом цикле фиксации углерода (цикл Кальвина - Бенсона) для связывания одной молекулы СО 2 затрачиваются три молекулы АТР и две молекулы NADPH. Суммарное уравнение реакций цикла имеет вид 3СО 2 + 9АТР + 6NADPH + Вода → Глицеральдегид-3-фосфат + + 8Р i + 9ADP + 6NADP + Таким образом, на построение органических молекул из СО 2 и Н 2 О затрачивается энергия фосфатных связей (в виде АТР) и восстано- 465 вителъная сила (в виде NADPH). Позднее мы вернемся к этому моменту. Глицеральдегид-3-фосфат, образующийся в хлоропластах в цикле фиксации углерода, представляет собой трехуглеродный углевод и является ключевым промежуточным продуктом гликолиза (разд. 2.3.2). Большая часть глицеральдегид-3-фосфата поступает в цитозоль, где быстро превращается в фруктозо-6-фосфат и глюкозо-1-фосфат в результате обратного протекания некоторых реакций гликолиза (разд. 2.5.3). Затем глюкозо-1 -фосфат превращается в углеводное производное нуклеотида, UDP-глюкозу, которая реагирует с фруктозо-6-фосфатом с образованием сахарозофосфата - непосредственного предшественника дисахарида сахарозы. У растений сахароза выполняет ту же функцию, что глюкоза у животных: это та основная форма, в которой сахара транспортируются из одних клеток в другие. По мере надобности сахароза переходит из листьев в остальные части растения по проводящим пучкам (см. рис. 7-45), подобно тому как глюкоза переносится с током крови в организме животного. В строме из большей части оставшегося в хлоропластах глицеральдегид-3-фосфата образуется крахмал. Это высокомолекулярный полимер глюкозы, служащий, так же как гликоген в животных клетках, резервным углеводом. Крахмал образуется в строме хлоропласта во время избыточной фотосинтетической активности и там же запасается в виде крупных зерен (см. рис. 7-39, Б). Синтез крахмала происходит путем обращения реакций гликолиза, протекающих в строме: глицеральдегид-3-фосфат превращается в глюкозо-1-фосфат, из которого затем образуется ADP-глюкоза, представляющая собой непосредственный предшественник крахмала. Ночью крахмал расщепляется для удовлетворения метаболических нужд растения. 7.3.5. Для облегчения роста некоторых тропических растений в условиях низких концентраций СО 2 фиксация углерода в их листьях компартментализована [30] Хотя рибулозобисфосфат-карбоксилаза присоединяет к рибулозо-1,5-фосфату преимущественно СО 2 , при низких концентрациях углекислоты она будет присоединять к нему О 2 . Это явно расточительный путь, при котором образуется одна молекула 3-фосфоглицерата и одна молекула двухуглеродного соединения фосфогликолата, а не две молекулы 3-фосфоглицерата (см. рис. 7-42). Фосфогликолат превращается в гликолат и поступает в пероксисомы, где из двух молекул гликолата синтезируется одна молекула 3-фосфоглицерата (три углеродных атома) и одна молекула СО 2 . Так как в этом процессе потребляется О 2 и освобождается СО 2 , он получил название фотодыхания. У многих растений около трети фиксированного углерода вновь высвобождается в виде СО 2 в результате фотодыхания. Пока не ясно, несет ли фотодыхание у растений какую-либо полезную функцию, или же это просто способ возвращения на путь фиксации углерода некоторой его части, превращенной в фосфогликолат из-за нежелательного взаимодействия кислорода с рибулозо-1,5-бисфосфатом. Фотодыхание может стать серьезной помехой в жарких, засушливых условиях, где растениям приходится закрывать свои устьица (поры в листьях, служащие для газообмена), чтобы избежать чрезмерной потери влаги. В результате уровень СО 2 в листьях резко падает, что ведет к усилению фотодыхания. Однако в листьях многих растений, произрастающих в сухом и жарком климате, таких как кукуруза и сахарный тростник, имеется специфический адаптивный механизм. У этих растений реакции цикла фиксации углерода, показанные на рис. 7-43, протекают только в хлоропластах специализированных клеток 466 Рис. 7-44 . Цикл транспортирования СО 2 у таких растений, как кукуруза. А. Образование углеводов происходит только в клетках обкладки проводящего пучка, где находится вся рибулозобисфосфат-карбоксилаза. Цикл перемещения СО 2 начинается в клетках мезофилла; в реакциях цикла участвуют четырех- и трехуглеродные соединения, указанные на схеме. Варианты такого цикла встречаются и в других СО 2 - транспортирующих растениях. Б. Взаимодействие фосфоенолпирувата с СО 2 в клетках мезофилла. в обкладке проводящего пучка, в которых содержится вся рибулозобисфосфат-карбоксилаза. Эти клетки защищены от воздуха и окружены слоем клеток мезофилла, «перекачивающих» СО 2 в клетки обкладки и тем самым создающих для рибулозобисфосфат-карбоксилазы высокую концентрацию СО 2 , которая сильно подавляет фотодыхание. «Насосом» для перекачки СО 2 служит цикл реакций, начинающийся фиксацией СО 2 в цитозоле клеток мезофилла при участии фермента, обладающего высоким сродством к двуокиси углерода (в виде бикарбоната). Образующееся четырехуглеродное соединение переносится в обкладку проводящего пучка и расщепляется там на одну молекулу СО 2 и одну трехуглеродную молекулу. Последняя снова переходит в клетки мезофилла, где в ходе реакции, требующей гидролиза АТР, превращается в активную форму, способную присоединить следующую молекулу СО 2 и вновь повторить цикл транспортировки СО 2 (рис. 7-44). Путем импульсного введения растению с таким СО 2 -насосом радиоактивной 14 СО 2 было установлено, что первое меченое органическое вещество, появляющееся в мезофилле в результате ассимиляции 14 СО 2 , содержит четыре углеродных атома, тогда как в других растениях оно оказывалось трехуглеродным (см. рис. 7-43). По этой причине транспортирующие СО 2 виды называют С 4 -растениями, а все остальные - С 3 - растениями (рис. 7-45). Подобно всякому направленному транспортному процессу, перенос СО 2 в клетки обкладки проводящего пучка требует затрат энергии. В жарких, сухих условиях эти затраты часто бывают намного меньше потерь от фотодыхания, происходящего в С 3 -растениях, поэтому 467 Рис. 7-45. Сравнение анатомического строения листьев у С 3 -растений и С 4 -растений. В обоих случаях клетки, хлоропласты которых осуществляют нормальный цикл фиксации углерода, выделены цветом. В С 4 -растениях клетки мезофилла специализированы для активной транспортировки СО 2 , а не для фиксации углерода; именно эти клетки создают высокое отношение СО 2 :О 2 в клетках обкладки проводящего пучка. Только в этих клетках у таких растений происходит цикл фиксации углерода (см. рис. 7-44). По проводящим пучкам образовавшаяся в листе сахароза поступает во все остальные ткани растения. С 4 -растения получают здесь преимущество. Кроме того, так как С 4 -растения могут осуществлять фотосинтез при низких концентрациях СО 2 внутри листа, они меньше открывают устьица и потому способны фиксировать примерно в два раза больше углерода на единицу потерь воды, чем С 3 - растения. |