Молекулярная биология клетки. Том 1. Молекулярная биология клетки 2Molecular Bruce Alberts, Dennis Bray,Biology
Скачать 25.6 Mb.
|
480 Рис. 7-58. Возможная эволюция механизмов окислительного фосфорилирования. Эти три гипотетические стадии в эволюции механизмов окислительного фосфорилирования схематически представлены на рис. 7-58. 7.4.3. Фотосинтезирующие бактерии, найдя неисчерпаемый источник восстановительной силы, смогли преодолеть серьезный кризис в эволюции клетки Хотя только что описанные эволюционные шаги разрешили проблему поддержания как нейтральной внутриклеточной среды, так и достаточных энергетических запасов, осталось непреодоленным другое, не менее серьезное затруднение. Истощение запасов сбраживаемых органических веществ означало, что нужно найти иной источник углерода для синтеза Сахаров - предшественников столь многих других молекул, необходимых клетке. Потенциальным источником углерода могла быть углекислота, которой было достаточно в атмосфере; однако для превращения СО 2 в органические молекулы, например углеводы, нужно восстановить связанную углекислоту сильным донором водорода (таким, как NADH или NADPH), способным отдавать богатые энергией электроны, необходимые для образования одной СН 2 О-единицы из СО 2 (см. рис. 7- 43). На ранних стадиях эволюции клетки большие количества таких восстанавливающих агентов образовывались при брожении. Однако по мере сокращения запасов сбраживаемых субстратов и возрастания роли мембранной АТР-синтетазы в образовании АТР запасы NADH и других восстановителей должны были тоже иссякнуть. Таким образом, клетки столкнулись с острой необходимостью найти новый источник сильных восстановителей. Главными донорами электронов в среде, где уже не было сбраживаемых молекул, стали органические кислоты, получаемые при анаэробном метаболизме углеводов, неорганические молекулы, такие как сероводород (H 2 S), образующийся в ходе геохимических процессов, и вода. Но восстанавливающая способность всех этих соединений слишком мала, чтобы ее можно было использовать для фиксации углекислоты. Впервые появление сильных доноров электронов было связано, вероятно, с использованием электрохимического протонного градиента между двумя сторонами плазматической мембраны для поддержания обратного тока электронов, что и послужило причиной возникновения мембраносвязанных ферментных комплексов, напоминающих NADH-дегидрогеназу (рис. 7-59). Однако главный эволюционный «прорыв» в энергетическом метаболизме произошел, когда возникли фотохимические реакционные центры, способные прямо синтезировать такие молекулы, как NADH. Полагают, что такие центры впервые появились больше 3 млрд. лет назад у предшественников зеленых серных бактерий. Современные зеленые серные бактерии используют лучистую энергию для переноса атома водорода (в виде электрона и протона) от молекулы сероводорода Рис. 7-59. Некоторые пути переноса электронов у современных бактерий, у которых необходимые для роста АТР и восстановительная сила образуются всецело за счет энергии окисления неорганических молекул -таких, как соединения железа, азота, серы и аммиака. Некоторые виды способны расти в анаэробных условиях благодаря замене кислорода как конечного акцептора электронов нитратом. Другие виды используют цикл фиксации углерода и синтезируют органические молекулы исключительно из СО 2 . «Прямой» поток электронов позволяет откачивать из клетки протоны, и энергия возникающего при этом протонного градиента используется АТР-синтетазой для синтеза АТР (на схеме не показано). NADPH, необходимый для фиксации углерода, образуется при участии «обратного» тока электронов (см. также рис. 7-51, Б). 481 Рис. 7-60. Поток электронов в относительно примитивной схеме нециклического фотосинтеза у современных зеленых серных бактерий. Фотосистема зеленых бактерий сходна с фотосистемой I растений и цианобактерий тем, что в ней тоже используется ряд железо-серных центров, которые служат первичными акцепторами электронов и затем отдают свои высокоэнергетические электроны ферредоксину (Ф). на NADP + , создавая тем самым восстановительную силу, необходимую для фиксации углерода (рис. 7-60). Так как электроны, отнятые от H 2 S, обладают гораздо более отрицательным редокс-потенциалом, чем электроны в молекуле воды ( — 230 и +820 мВ соответственно), одного кванта света, поглощенного единственной имеющейся у этих бактерий фотосистемой, достаточно, чтобы достигнуть редокс-потенциала, необходимого для образования NADPH при участии сравнительно простой электронтранспортной цепи. 7.4.4. Первый атмосферный кислород был, вероятно, продуктом более сложных фотосинтетических электронтранспортных цепей цианобактерий [44] На следующем этапе, который, как полагают, начался примерно 3 млрд. лет назад с появления цианобактерий, возникли организмы, способные использовать воду как источник водорода для восстановления СО 2 . Это привело к развитию второй фотосистемы, включенной последовательно с первой, что позволило преодолеть большой разрыв в редокс-потенциалах Н 2 О и NADPH. Структурные гомологии между современными фотосистемами дают основание предполагать, что здесь объединились две фотосистемы, одна из которых ведет свое происхождение от зеленых бактерий (фотосистема I), а другая - от пурпурных бактерий (фотосистема II). Этот эволюционный шаг имел далеко идущие биологические последствия. Впервые появились организмы, обладавшие минимальными потребностями в химических веществах окружающей среды, и эти организмы могли распространяться и эволюционировать по путям, недоступным для более примитивных фотосинтезирующих бактерий, которые нуждались в H 2 S и органических кислотах как донорах электронов. В результате накопилось большое количество восстановленного органического материала, синтезированного живыми клетками. Кроме того, впервые в атмосферу стал поступать молекулярный кислород. Кислород весьма токсичен, так как он может инактивировать ферменты, окисляя их. Например, многие из ныне существующих анаэробных бактерий быстро погибают при контакте с воздухом. Поэтому организмы древней Земли должны были выработать средства защиты от возрастающих концентраций О 2 в окружающей среде. Существа, по- 482 Рис. 7-61 . Связь между содержанием кислорода в атмосфере и некоторыми из важнейших гипотетических этапов эволюции жизни на Земле. Судя по геологическим данным, между возникновением цианобактерий (которые, видимо, были первыми организмами, выделявшими кислород) и началом быстрого повышения концентрации кислорода в воздухе прошло больше миллиарда лет. Такая «задержка» объясняется главным образом наличием большого запаса растворенных в океане ионов закисного (двухвалентного) железа, которые вступали в реакцию с выделявшимся кислородом, что привело к образованию огромных отложений железа в окисной форме. явившиеся на поздних этапах эволюции, обладают многочисленными механизмами, предохраняющими их ферменты от вредного воздействия кислорода. Вначале уровень кислорода в атмосфере повышался очень медленно. Первобытные моря содержали большие количества ионов двухвалентного железа (Fe II), и почти весь кислород, выделяемый ранними фотосинтезирующими бактериями, использовался на превращение Fe II в Fe III. что привело к осаждению огромного количества окислов железа. Обширные «полосчатые железные формации», образование которых началось примерно 2,7 млрд. лет назад, помогают определить время интенсивного развития цианобактерий. Около 2 млрд. лет назад запасы двухвалентного железа истощились и отложение железосодержащих осадков прекратилось, после чего, судя по геологическим данным, содержание кислорода в атмосфере стало повышаться и достигло современного уровня где-то в период от 0,5 до 1,5 млрд. лет назад (рис. 7-61). Наличие кислорода сделало возможным возникновение бактерий, способных синтезировать АТР за счет аэробного метаболизма; эти бактерии могли использовать большое количество энергии, высвобождаемое при полном расщеплении углеводов и других восстановленных органических молекул до СО 2 и Н 2 О. В результате модификации некоторых компонентов существовавших ранее электронтранспортных комплексов образовалась цитохромоксидаза, благодаря чему электроны, извлекаемые из органических и неорганических субстратов, могли передаваться на О 2 как конечный акцептор электронов. Многие из современных пурпурных фотосинтезирующих бактерий способны переключать метаболизм с фотосинтеза на дыхание и обратно в зависимости от того, какой источник энергии более доступен - свет или кислород; такое переключение связано у них с поразительно малыми изменениями в электронтранспортной цепи. По мере накопления органического материала в результате фотосинтеза некоторые фотосинтезирующие бактерии (в том числе предшественники Е. coli) утратили способность существовать только за счет лучистой энергии и полностью перешли на дыхательный метаболизм. Полагают, что митохондрии впервые появились 1,5 млрд. лет назад, когда такие «дышащие» бактерии стали эндосимбионтами в примитивных эукариотических клетках (см. разд. 7.5.16). Позднее потомки ранних аэробных эукариотических клеток поглотили путем эндоцитоза какую-то фотосинтезирующую бактерию, которая и стала предшествен- 483 Рис. 7-62 . Филогенетическое древо возможной эволюции митохондрий, хлоропластов и их бактериальных предков. Полагают, что кислородное дыхание стало развиваться примерно 2 млрд. лет назад. Как видно из рисунка, такое дыхание, вероятно, независимо возникло в трех линиях фотосинтезирующих прокариот - у зеленых, пурпурных и синезеленых бактерий. По-видимому, какая-то форма аэробных пурпурных бактерий, утратившая способность к фотосинтезу, дала начало митохондриям, тогда как несколько различных синезеленых бактерий были предками хлоропластов. Детальный анализ нуклеотидных последовательностей показывает, что митохондрии скорее всего произошли от бактерий, напоминающих современные ризобактерии, агробактерии и риккетсии - три родственные группы, представители которых вступают в тесные ассоциации с современными эукариотическими клетками (см. разд. 20.3.2 и 20.3.3). ником хлоропластов. Однако уникальность хлоропластов у различных водорослей указывает на независимую эволюцию хлоропластов у разных групп организмов. На рис. 7-62 показаны некоторые из предполагаемых эволюционных путей, рассмотренных выше. Эволюция всегда консервативна - все новое создается на основе какой-то части уже существующего. Например, некоторые участки электронтранспортной цепи, служившей анаэробным бактериям три миллиарда лет назад, вероятно, вошли в измененном виде в соответствующие цепи митохондрий и хлоропластов высших эукариот. Примером может служить поразительная гомология между структурой и функцией ферментных комплексов в среднем участке митохондриальной дыхательной цепи (комплекс b-с 1 ) и определенными участками электронтранспортной цепи бактерий и хлоропластов (рис. 7-63). Заключение Как полагают, древнейшие клетки представляли собой организмы, сходные с бактериями, и жили в среде, богатой восстановленными органическими молекулами, образовавшимися в ходе геохимических процессов на протяжении сотен миллионов лет. Эти организмы, вероятно, получали почти весь свой АТР путем превращения восстановленных соединений в различные органические кислоты, которые выводились, как отходы, в окружающую среду. Процессы брожения привели к закислению среды, в связи с чем, возможно, и возник первый протонный насос, связанный с мембраной, при помощи которого внутри клетки поддерживалась нейтральная реакция. Особенности современных бактерий указывают на 484 Рис. 7-63. Сравнительные схемы трех электронтранспортных цепей, подробно рассмотренных в этой главе. Бактерии и хлоропласты содержат связанный с мембраной ферментный комплекс, очень сходный с аналогичным комплексом b-c l митохондрий. Все эти комплексы принимают электроны от хинона (Q) и перекачивают протоны через соответствующие мембраны. Более того, в системах, реконструированных in vitro, различные комплексы могут заменять друг друга, а анализ аминокислотных последовательностей их белковых компонентов показывает, что эти белки эволюционно родственны. то, что протонный насос, использующий энергию переноса электронов, и протонный насос, функционирующий за счет энергии гидролиза АТР, возникли в этих анаэробных условиях. Обратимость функционирования позволила АТР-зависимому протонному насосу действовать в роли АТР- синтетазы. Поэтому по мере создания более эффективных электронтранспортных цепей энергия, высвобождаемая при окислительно- восстановительных реакциях между неорганическими молекулами, могла использоваться для синтеза АТР. Размножение бактерий, использовавших в качестве источника углерода и восстановителей предобразованные органические молекулы, не могло продолжаться долго, так как этот источник пополнялся в результате геохимических процессов очень медленно. Истощение запасов сбраживаемых органических веществ, вероятно, привело к возникновению бактерий, способных создавать углеводы из СО 2 . Используя уже имевшиеся у них части электронтранспортной цепи, фотосинтезирующие бактерии улавливали с помощью своей единственной фотосистемы лучистую энергию и направляли ее на синтез NADPH, необходимый для фиксации углерода. Последующее появление более сложной фотосинтезирующей цепи переноса электронов у цианобактерий дало возможность использовать в качестве донора электронов при образовании NADPH воду, 485 а не другие более редкие доноры электронов, необходимые остальным фотосинтезирующим бактериям. При этом в результате распространения жизни на обширных пространствах снова аккумулировались восстановленные органические вещества. Кислород, высвобождаемый благодаря фотосинтезу цианобактерий, стал накапливаться в атмосфере примерно 2 млрд. лет назад. При обилии кислорода и органических молекул электронтранспортные цепи адаптировались для переноса электронов с NADH на кислород и у многих бактерий выработался эффективный аэробный метаболизм. Точно такой же аэробный метаболизм характерен для митохондрий эукариотических клеток, и уже есть убедительные данные в пользу того, что митохондрии и хлоропласты - это потомки аэробных бактерий, поглощенных примитивными эукариотическими клетками путем эндоцитоза. 7.5. Геномы митохондрий и хлоропластов [45] По мере роста и деления клеток в их цитоплазме должны образовываться новые органеллы. В неделящихся клетках тоже происходит непрерывное обновление органелл - вместо распадающихся образуются новые. Для этого требуется регулируемый синтез необходимых белков и липидов с последующей доставкой каждого компонента в надлежащий участок органеллы. В гл. 8 уже рассматривался перенос определенных белков и липидов, синтезированных вне органелл, в митохондрии и хлоропласты, а здесь речь пойдет о вкладе этих органелл в их собственный биосинтез. В биосинтезе белков митохондрий и хлоропластов участвуют две различные генетические системы. Хотя большая часть этих белков кодируется ядерной ДНК и переходит в органеллу после того, как они были синтезированы на рибосомах цитозоля, некоторые белки кодируются собственной ДНК органеллы и синтезируются на рибосомах внутри самой органеллы. Видимо, перенос белков осуществляется только в одном направлении - из цитозоля в органеллы; во всяком случае такие белки, которые переходили бы в цитозоль из митохондрий или хлоропластов, не известны. Рис. 7-64. Обобщенная схема синтеза белков, содержащихся в митохондриях и хлоропластах. Толстыми стрелками указаны места воздействия ингибиторов, специфически подавляющих белковый синтез либо в митохондриях, либо в цитозоле. 486 Участие двух генетических систем в образовании митохондрий и хлоропластов довольно точно согласовано (разд. 7.5.12). Однако эта согласованность не абсолютна, и изолированные органеллы продолжают некоторое время синтезировать в пробирке ДНК, РНК и белки, что позволяет установить, какие белки кодируются ДНК самой органеллы, а какие ядерной ДНК. Другой подход состоит в изучении действия специфических ингибиторов на интактную клетку. Например, циклогексимид ингибирует белковый синтез в цитозоле, но не влияет на синтез белка в митохондриях и хлоропластах. Некоторые другие антибиотики, такие как хлорамфеникол, тетрациклин и эритромицин, наоборот, подавляют синтез белка в энергетических органеллах, но не оказывают заметного влияния на его синтез в цитозоле (рис. 7-64). Подобные ингибиторы широко используются для изучения функций митохондрий и хлоропластов. 7-33 7.5.1. Число митохондрий и хлоропластов в клетке поддерживается путем их деления [46] Митохондрии и хлоропласты никогда не возникают de novo, они всегда образуются путем деления уже существующих органелл. Как показывают наблюдения над живыми клетками, митохондрии не только делятся, но могут и сливаться друг с другом. Однако в среднем каждая органелла должна удвоить свою массу и затем разделиться пополам один раз за одну клеточную генерацию. Электронные микрофотографии дают основание полагать, что деление митохондрий начинается с образования кольцевой бороздки на внутренней мембране, подобно тому как это происходит при делении многих бактериальных клеток (рис. 7-65 и 7-66); таким образом, деление митохондрий - это, по-видимому, контролируемый процесс, а не случайное расщепление надвое. В большинстве клеток энергопреобразующие органеллы делятся на протяжении всей интерфазы; таким образом, каждая из них делится независимо от остальных и от всей клетки. Точно так же репликация ДНК в органеллах происходит не только в период синтеза ядерной ДНК (S- фаза), но и в другие фазы клеточного цикла. Хотя, по-видимому, индивидуальные молекулы ДНК реплицируются случайным образом (так что в данном клеточном цикле одни могут удвоиться несколько раз, а другие ни разу), общее число их за каждый клеточный цикл удваивается, поддерживая постоянство количества этой ДНК в клетке. Число энергетических органелл может регулироваться в зависимости от потребности клетки в энергии; например, значительное увеличение (в 5-10 раз) количества митохондрий наблюдается при многократном сокращении скелетной мышцы в течение длительного периода. Более того, в ряде случаев деление органелл регулируется клеткой: так, хлоропласты некоторых водорослей, содержащих только одну или несколько таких органелл, делятся непосредственно перед цитокинезом, причем в той же плоскости, в которой будет происходить очередное деление клетки (рис. 7-67). Но действующие при этом регуляторные механизмы на молекулярном уровне не изучены. |