Главная страница

Основы линейной алгебры. Начала линейной алгебры Системы линейных уравнений


Скачать 494 Kb.
НазваниеНачала линейной алгебры Системы линейных уравнений
Дата29.10.2019
Размер494 Kb.
Формат файлаdoc
Имя файлаОсновы линейной алгебры.doc
ТипДокументы
#92438
страница7 из 20
1   2   3   4   5   6   7   8   9   10   ...   20
.

Преобразуем матрицу системы по методу Гаусса:

.

Последняя строка последней матрицы соответствует не имеющему решения уравнению 0x+ 0x+ 0x= 1. Следовательно, исходная система несовместна.

Сформулируем теперь кратко суть метода Гаусса. Полагая, что в системе коэффициент a11 отличен от нуля ( если это не так, то следует на первое место поставить уравнение с отличным от нуля коэффициентом при x1 и переобозначить коэффициенты), преобразуем систему следующим образом: первое уравнение оставляем без изменения, а из всех остальных уравнений исключаем неизвестную x1 с помощью эквивалентных преобразований описанным выше способом.

В полученной системе

,

считая, что (что всегда можно получить, переставив уравнения или слагаемые внутри уравнений и переобозначив коэффициенты системы), оставляем без изменений первые два уравнения системы, а из остальных уравнений, используя второе уравнения, с помощью элементарных преобразований исключаем неизвестную x2. Во вновь полученной системе



при условии оставляем без изменений первые три уравнения, а из всех остальных с помощью третьего уравнения элементарными преобразованиями исключаем неизвестную x3.

Этот процесс продолжается до тех пор, пока не реализуется один из трех возможных случаев:

1) если в результате приходим к системе, одно из уравнений которой имеет нулевые коэффициенты при всех неизвестных и отличный от нуля свободный член, то исходная система несовместна;

2) если в результате преобразований получаем систему с матрицей коэффициентов треугольного вида, то система совместна и является определенной;

3) если получается система с трапецеидальной матрицей коэффициентов (и при этом не выполняется условие пункта 1), то система совместна и неопределенна.
1   2   3   4   5   6   7   8   9   10   ...   20


написать администратору сайта