Главная страница

Основы линейной алгебры. Начала линейной алгебры Системы линейных уравнений


Скачать 494 Kb.
НазваниеНачала линейной алгебры Системы линейных уравнений
Дата29.10.2019
Размер494 Kb.
Формат файлаdoc
Имя файлаОсновы линейной алгебры.doc
ТипДокументы
#92438
страница4 из 20
1   2   3   4   5   6   7   8   9   ...   20
A является расширенной матрицей некоторой системы, и путем ряда элементарных преобразований матрицаAпереводится в матрицу B, являющуюся расширенной матрицей некоторой другой системы, то эти системы эквивалентны.

Назовем квадратную матрицу, у которой на главной диагонали стоят числа, отличные от нуля, а под главной диагональю – нули, треугольной матрицей. Матрица коэффициентов системы (4) – треугольная матрица.

Если с помощью элементарных преобразований матрицу коэффициентов квадратной системы можно привести к треугольной матрице, то система совместна и определенна.

Рассмотрим другой пример:

. (5)

Проведем следующие преобразования расширенной матрицы системы:

1) первую строку оставим без изменения;

2) вместо второй строки запишем разность между второй строкой и удвоенной первой;

3) вместо третьей строки запишем разность между третьей строкой и утроенной первой;

4) четвертую строку заменим разностью между четвертой и первой;

5) пятую строку заменим разностью пятой строки и удвоенной первой.

В результате преобразований получим матрицу

.

Оставив без изменения первые две строки этой матрицы, приведем ее элементарными преобразованиями к следующему виду:

.

Если теперь, следуя методу Гаусса, который также называют и методом последовательного исключения неизвестных, с помощью третьей строки привести к нулю коэффициенты при x3 в четвертой и пятой строках, то после деления всех элементов второй строки на 5 и деления всех элементов третьей строки на 2 получим матрицу

.

Каждая из двух последних строк этой матрицы соответствует уравнению 0x1+0x2+0x3+0x4+0x5 = 0. Это уравнение удовлетворяется любым набором чисел x1, x2, , x5, и его следует удалить из системы. Таким образом, система с только что полученной расширенной матрицей эквивалентна системе с расширенной матрицей вида

. (6)

Последняя строка этой матрицы соответствует уравнению
x3 – 2x4 + 3x5 = –4. Если неизвестным x4 и x5 придать произвольные значения: x4 = r; x5 = s, то из последнего уравнения системы, соответствующей матрице (6), получим x3 = –4 + 2r – 3s. Подставив выражения x3, x4, и x5 во второе уравнение той же системы, получим x2 = –3 + 2r – 2s. Теперь из первого уравнения можно получить x1 = 4 – r + s. Окончательно решение системы представляется в виде

.

Рассмотрим прямоугольную матрицу
1   2   3   4   5   6   7   8   9   ...   20


написать администратору сайта