Общая Физиология 1 Аналитический и системный подход к изучению функций организма При аналитическом подходе
Скачать 1.8 Mb.
|
6.Дыхательный центр: структура и связи, обеспечение правильного чередования фаз дыхательного цикла . Влияние других отделов ЦНС. Дыхательный центр- совокупность нейронов специфических (дыхательных) ядер продолговатого мозга, способных генерировать дыхательный ритм. Дыхательный центр - это парное, симметрично расположенное образование, в состав которого входят вдыхательная и выдыхательная части. В дыхательном центре имеются две группы нейронов: инспираторные и экспираторные. При возбуждении инспираторных нейронов, обеспечивающих вдох, деятельность экспираторных нервных клеток заторможена, и наоборот. В верхней части моста головного мозга (варолиев мост) находится пневмотаксический центр, который контролирует деятельность расположенных ниже центров вдоха и выдоха и обеспечивает правильное чередование циклов дыхательных движений. Дыхательный центр, расположенный в продолговатом мозге, посылает импульсы к мотонейронам спинного мозга, иннервирующим дыхательные мышцы. Диафрагма иннервируется аксонами мотонейронов, расположенных на уровне III—IV шейных сегментов спинного мозга. Мотонейроны, отростки которых образуют межреберные нервы, иннервирующие межреберные мышцы, расположены в передних рогах (III—XII) грудных сегментов спинного мозга. Дыхательный центр выполняет две основные функции в системе дыхания: моторную, или двигательную, которая проявляется в виде сокращения дыхательных мышц, и гомеостатическую, связанную с изменением характера дыхания при сдвигах содержания О2 и СО2 во внутренней среде организма. Нейроны дыхательного центра в зависимости от проекции их аксонов подразделяют на три группы: 1) нейроны, иннервирующие мышцы верхних дыхательных путей и регулирующие поток воздуха в дыхательных путях; 2) нейроны, которые синаптически связаны с дыхательными мотонейронами спинного мозга и управляют таким образом мышцами вдоха и выдоха; 3) проприобульбарные нейроны, которые связаны с другими нейронами дыхательного центра и участвуют только в генерации дыхательного ритма. в продолговатом мозге локализованы центры вдоха, выдоха и судорожного дыхания. В верхней части моста мозга (варолиев мост) находится пнеймотаксический центр, который контролирует деятельность расположенных ниже центров вдоха и выдоха и обеспечивает правильное чередование циклов дыхательных движений. Регуляция дыхания корой больших полушарий имеет свои качественные особенности. В опытах с прямым раздражением электрическим током отдельных областей коры головного мозга было показано выраженное влияние ее на глубину и частоту дыхательных движений. Результаты исследований М. В. Сергиевского и его сотрудников, полученные при непосредственном раздражении различных участков коры больших полушарий электрическим током в острых, полухронических и хронических опытах (вживленные электроды), свидетельствуют о том, что нейроны коры не всегда оказывают однозначное влияние на дыхание. Конечный эффект зависит от ряда факторов, главным образом от силы, продолжительности и частоты применяемых раздражений, функционального состояния коры головного мозга и дыхательного центра. регуляция активности дыхательного центра сложна. По М. В. Сергиевскому, она состоит из трех уровней. Первый уровень регуляции представлен спинным мозгом. Здесь располагаются центры диафрагмальных и межреберных нервов. Эти центры обусловливают сокращение дыхательных мышц. Однако этот уровень регуляции дыхания не может обеспечить ритмичную смену фаз дыхательного цикла, так как огромное количество афферентных импульсов от дыхательного аппарата, минуя спинной мозг, направляется непосредственно в продолговатый мозг. Второй уровень регуляции связан с функциональной активностью продолговатого мозга. Здесь находится дыхательный центр, который воспринимает разнообразные афферентные импульсы, идущие от дыхательного аппарата, а также от основных рефлексогенных сосудистых зон. Этот уровень регуляции обеспечивает ритмичную смену фаз дыхания и активность спинномозговых мотонейронов, аксоны которых иннервируют дыхательную мускулатуру. Третий уровень регуляции - это верхние отделы головного мозга, включающие и корковые нейроны. Только при наличии коры полушарий головного мозга возможно адекватное приспособление реакций системы дыхания к изменяющимся условиям существования организма. 7.Физиологический механизм первого вдоха новорожденного. Легкие начинают обеспечивать организм кислородом с момента рождения. До этого плод получает 02 через плаценту по сосудам пуповины. Во внутриутробном периоде происходит бурное развитие дыхательной системы: формируются воздухоносные пути, альвеолы. Следует отметить, что легкие плода с момента их образования находятся в спавшемся состоянии. Ближе к рождению начинает синтезироваться сурфактант. Установлено, что, еще находясь в организме матери, плод активно тренирует дыхательную мускулатуру: диафрагма и другие дыхательные мышцы периодически сокращаются, имитируя вдох и выдох. Однако околоплодная жидкость при этом не поступает в легкие: голосовая щель у плода находится в сомкнутом состоянии.После родов поступление кислорода в организм новорожденного прекращается, так как пуповина перевязывается. Концентрация 02 в крови плода постепенно уменьшается. В то же время постоянно увеличивается содержание С02, что приводит к закислению внутренней среды организма. Эти изменения регистрируются хеморецепторами дыхательного центра, который расположен в продолговатом мозге. Они сигнализируют об изменении гомеостаза, что ведет к активации дыхательного центра. Последний посылает импульсы к дыхательным мышцам — возникает первый вдох. Голосовая щель раскрывается, и воздух устремляется в нижние дыхательные пути и далее — в альвеолы легких, расправляя их. Первый выдох сопровождается возникновением характерного крика новорожденного. На выдохе альвеолы уже не слипаются, так как этому препятствует сурфактант. У недоношенных детей, как правило, количество сурфактанта недостаточно для обеспечения нормальной вентиляции легких. Поэтому у них после рождения часто наблюдаются различные дыхательные расстройства. 8. Регуляция и саморегуляция дыхания. Значение рецепторного аппарата в регуляции дыхания Основная роль в рефлекторной саморегуляции дыхания принадлежит механорецепторам легких. В зависимости от локализации и характера чувствительности выделяют три их вида: 1.Рецепторы растяжения. Находятся преимущественно в гладких мышцах трахеи и бронхов. Возбуждаются при растяжении их стенок. Обеспечивают смену фаз дыхания. 2.Ирритантные рецепторы. Расположены в эпителии слизистой трахеи и бронхов. Они реагируют на раздражающие вещества и пылевые частицы. Обеспечивают защитные дыхательные рефлексы. 3.Юкстакапиллярные рецепторы. Находятся в интерстициальной ткани альвеол и бронхов. Возбуждаются при ↑ давления в малом круге кровообращения, а также ↑ объема интерстициальной жидкости. Важнейшим для дыхания является рефлекс Геринга-Брейера, При вдохе легкие растягиваются и возбуждаются рецепторы растяжения. Импульсы от них по афферентным волокнам блуждающих нервов поступают в бульбарный дыхательный центр. Они идут к β-респираторным нейронам, которые в свою очередь тормозят сс-респираторные. Вдох прекращается и начинается выдох. Данный рефлекс обеспечивает нормальную частоту и глубину дыхания, а также препятствует перерастяжению легких. Определенное значение в рефлекторной регуляции дыхания имеют проприорецепторы дыхательных мышц. При сокращении мышц импульсы от их проприорецепторов поступают к соответствующим мотонейронам дыхательных мышц. За счет этого регулируется сила сокращений мышц при каком-либо сопротивлении дыхательным движениям. 9.Физиологическое обоснование изменений дыхания при физической работе, повышенном и пониженном барометрическом давлении. Поскольку насыщение артериальной крови кислородом при подъеме на высоту до 3000 м над уровнем моря составляет не менее 90 %, то в этих условиях незначительное снижение напряжения 02 в артериальной крови человека происходит за счет уменьшения содержания в крови физически растворенного кислорода. Это, тем не менее, обусловливает появление слабо выраженной гипоксемии и сопровождается незначительным увеличением вентиляции легких. Восхождение человека на высокую гору всегда сопряжено с усиленной мышечной деятельностью, повышением температуры тела, увеличением в плазме крови содержания катехоламинов. Эти факторы оказывают комплексное стимулирующее влияние на дыхание человека при восхождении на горную высоту. В результате слабо выраженная артериальная гипоксемия при участии периферических хеморецепторов увеличивает степень гиперпноэ у человека, обусловленное работой мышц. Повышенное содержание катехоламинов в плазме крови повышает чувствительность периферических хеморецепторов к гипоксемии и, усиливая активность периферических хеморецепторов, ведет к росту параметров внешнего дыхания. Наконец, повышение температуры тела человека при восхождении на высокие горы в результате мышечной деятельности также повышает чувствительность периферических хеморецепторов к гипоксемии. Повышение температуры тела при физической работе может стимулировать дыхание через усиление скорости метаболизма в организме, через периферические хеморецепторы и нейроны дыхательного центра. При этом периферические хеморецепторы являются основными источниками стимуляции вентиляции легких у человека при гипоксии. Поэтому при восхождении человека на высокую гору до высоты 3—3,5 км над уровнем моря усиление вентиляции обусловлено активацией механизмов гуморальной и нервной регуляции дыхания в пределах физиологической нормы. При физической нагрузке потребление О2 и продукция СО2 возрастают в среднем в 15—20 раз. Одновременно усиливается вентиляция и ткани организма получают необходимое количество О2, а из организма выводится CO2. В момент начала мышечной работы вентиляция быстро увеличивается, однако в начальный период работы не происходит каких-либо существенных изменений рН и газового состава артериальной и смешанной венозной крови. Следовательно, в возникновении гиперпноэ в начале физической работы не участвуют периферические и центральные хеморецепторы как важнейшие чувствительные структуры дыхательного центра, чувствительные к гипоксии и к понижению рН внеклеточной жидкости мозга. Уровень вентиляции в первые секунды мышечной активности регулируется сигналами, которые поступают к дыхательному центру из гипоталамуса, мозжечка, лимбической системы и двигательной зоны коры большого мозга. Одновременно активность нейронов дыхательного центра усиливается раздражением проприоцепторов работающих мышц. Довольно быстро первоначальный резкий прирост вентиляции легких сменяется ее плавным подъемом до достаточно устойчивого состояния, или так называемого плато. В период «плато», или стабилизации вентиляции легких, происходит снижение Рао2 и повышение Расо2 крови, усиливается транспорт газов через аэрогематический барьер, начинают возбуждаться периферические и центральные хеморецепторы. В этот период к нейрогенным стимулам дыхательного центра присоединяются гуморальные воздействия, вызывающие дополнительный прирост вентиляции в процессе выполняемой работы. При тяжелой физической работе на уровень вентиляции будут влиять также повышение температуры тела, концентрация катехоламинов, артериальная гипоксия и индивидуально лимитирующие факторы биомеханики дыхания.Состояние «плато» наступает в среднем через 30 с после начала работы или изменения интенсивности уже выполняемой работы. В соответствии с энергетической оптимизацией дыхательного цикла повышение вентиляции при физической нагрузке происходит за счет различного соотношения частоты и глубины дыхания. При очень высокой легочной вентиляции поглощение О2 дыхательными мышцами сильно возрастает. Это обстоятельство ограничивает возможность выполнять предельную физическую нагрузку. Окончание работы вызывает быстрое снижение вентиляции легких до некоторой величины, после которой происходит медленное восстановление дыхания до нормы. 10.Защитные дыхательные рефлексы. Раздражение афферентных нервов может вызывать учащение и усиление дыхательных движений или же замедление и даже полную остановку дыхания. При вдыхании воздуха с примесью аммиака, хлора и других остро пахнущих веществ наступает задержка дыхательных движений. Рефлекторная остановка дыхания сопровождает каждый акт глотания. Эта реакция предохраняет дыхательные пути от попадания пищи. К защитным дыхательным рефлексам относится кашель, чихание, сморкание, зевота. Кашель — рефлекторный акт, возникающий при раздражении рецепторов дыхательных путей, плевры и органов брюшной полости инородными частицами, экссудатом, газовыми смесями. Это усиленный выдыхаемый толчок при закрытой голосовой щели, необходимый для удаления из воздухоносных путей посторонних тел и выделений (пыль, слизь).Чихание — непроизвольный выдыхаемый толчок при открытом носоглоточном пространстве, способствующий удалению посторонних тел и выделений из полости носа. При чихании очищаются носовые ходы.Сморкание — можно рассматривать как замедленное и произвольно совершаемое чихание. Зевота — продолжительное глубокое вдыхание при открытом рте, зеве и голосовой щели Физиология системы пищеварения 1.Физиологическая сущность процесса пищеварения. Сущность процесса пищеварения состоит в превращении поступивших в организм кормов в растворимые питательные вещества, которые всасываются через стенку пищеварительного тракта в кровь и лимфу. Пищеварение — сложный физиологический и биохимический процесс, в ходе которого принятая пища в пищеварительном тракте подвергается физическим и химическим изменениям. В результате этого компоненты пищи должны сохранить свою пластическую и энергетическую ценность; приобрести свойства, благодаря которым они могут быть усвоенными организмом и включенными в его нормальный обмен веществ; утратить видовую специфичность (при сохранении которой компоненты пищи не усваиваются и как чужеродные вещества, вызывающие защитные реакции организма, могут быть причиной тяжелых патологических явлений). Физические изменения пищи состоят в ее размельчении, набухании, растворении, химические — в последовательной деградации питательных веществ в результате действия на них компонентов пищеварительных соков, выделяемых в полость пищеварительного тракта его железами. Важнейшая роль в этом принадлежит гидролитическим ферментам секретов пищеварительных желез и исчерченной каемки тонкой кишки. Названные процессы идут в определенной последовательности, «наслаиваясь» по отделам пищеварительного тракта. Продвижение пищевого содержимого в дистальном направлении, его задержка на различное время в том или ином отделе пищеварительного тракта, смешивание пищевых веществ с пищеварительным секретами обеспечиваются его гладкомышечным аппаратом, т. е. моторный аппарат пищеварительного тракта распределяет пищеварение во времени и пространстве и в большой мере влияет на его интенсивность. В результате деполимеризации питательных веществ образуются продукты, в основном мономеры, которые всасываются из кишечника в кровь и лимфу, транспортируются к тканям организма и включаются в его метаболизм. Вода, минеральные соли и некоторые органические компоненты пищи (в том числе витамины) всасываются в кровь неизмененными. 2. Пищевая мотивация, физиологические основы голода и насыщения. Пищевая мотивация: Возбуждение нейронов латерального гипоталамуса не ограничивается влияниями на нейроны вентромедиального гипоталамуса. Нейроны латерального гипоталамуса благодаря их обширным связям с нейронами лимбико-ретикулярных структур мозга и посредством этих образований с корой большого мозга оказывают на них восходящие активирующие влияния. Благодаря этим влияниям и формируется эмоционально окрашенное ощущение голода. На этой основе строятся пищевые мотивации - эмоционально окрашенные состояния, ведущие к приему пищи.Пищевой аппетит. Под пищевым аппетитом обычно понимают нерезко выраженное, ослабленное чувство голода. Это определение не совсем точно. Пищевой аппетит - избирательное отношение испытывающего слабый голод субъекта к определенному виду пищи. При сильном голоде избирательное отношение к пище устраняется. Избирательность пищевого аппетита определяется двумя моментами избирательностью пищевой потребности и опытом индивида по удовлетворению пищевой потребности. Избирательность пищевой потребности может заключать в себе потребность в соленых, сладких и других веществах, чем и определяется избирательное влечение субъекта именно к этим веществам. Особенно избирателен, порой даже «капризен», аппетит беременных женщин. Он определяется потребностями метаболизма не только матери, но и быстро растущего плода. Опыт субъекта по удовлетворению пищевых потребностей, определяющий избирательное отношение к пище, может быть генетически детерминирован и включать национальные и семейные привычки к определенному виду пищи. Эндогенное питание. Как правило, функциональная система питания преимущественно определяет удовлетворение пищевой потребности субъектов за счет внешнего звена саморегуляции - приема пищи извне. Однако в определенных условиях - при вынужденном или добровольном голодании - она может функционировать за счет внутреннего звена саморегуляции. Эти процессы определяют эндогенное питание организма.Эндогенное питание осуществляется за счет внутреннего звена саморегуляции функциональной системы, определяющей оптимальный уровень питательных веществ в организме. Потребление пищи организмом происходит в соответствии с интенсивностью пищевой потребности, которая определяется его энергетическими и пластическими затратами. Такая регуляция потребления пищи называется кратковременной. Долговременная возникает в результате длительного голодания или переедания, после которых объем потребляемой пищи или возрастает или снижается. Пищевая мотивация проявляется чувством голода. Это эмоционально окрашенное состояние отражающее пищевую потребность. Субъективно чувство голода локализуется в желудке, так как движения пустого желудка вызывают раздражение его механорецепторов и поступление нервных импульсов в отделы пищевого центра. Его возникновению способствует и возбуждение хеморецепторов пустого кишечника. Однако главную роль играют глюкорецепторы желудка, кишечника, печени и промежуточного мозга. При снижении содержания глюкозы в крови они возбуждаются. Нервные импульсы от них поступают к центру голода гипоталамуса, а от него к лимбической системе и коре. Возникает чувство голода. При увеличении содержания глюкозы до определенного уровня развивается чувство насыщения, так как активируются нейроны центра насыщения гипоталамуса. Центр голода находится в области латеральных ядрах гипоталамуса, а центр насыщения в вентромедиальных. Эти центры находятся в реципрокных отношениях. В них имеются нейроны чувствительные к недостатку или избытку глюкозы, жирных кислот, аминокислот. Они совместно с периферическими рецепторами участвуют в формировании пищевой мотивации, реагируя на изменение состава спинномозговой жидкости. Координируется активность этих центров нейронами миндалевидного ядра. В частности оно определяет поведение на вкусную и невкусную пищу. Стадия насыщения возникающая при раздражении рецепторов полости рта, желудка, кишечника называется сенсорной. Возникновение этой стадии обусловлено возбуждением определенных зон фронтальной коры. Кора формирует психологические наклонности. К ним относятся обычный аппетит, склонность к определенным блюдам и т.д. При поступлении продуктов гидролиза пищевых веществ в кровь развивается метаболическая стадия насыщения. |