Главная страница
Навигация по странице:

  • 20. Приспособительные изменения кровотока и АД как компонент целостной поведенческой деятельности организма.

  • Физиология системы дыхания 1.Функциональная система дыхания: компоненты, полезный приспособительный результат.

  • 2. Физиологическая сущность дыхания, этапы транспорта кислорода и углекислого газа.

  • 3.Плевральная полость. Структурно-функциональные особенности и значение для дыхания. Биомеханика вдоха и выдоха. Пневмоторакс.

  • 4. Физиологические механизмы газообмена и транспорта газов. Парциальное давление и напряжение газов в крови.

  • 5. Гипоксия и её виды: физиологическое обоснование коррекции гипоксии.

  • Общая Физиология 1 Аналитический и системный подход к изучению функций организма При аналитическом подходе


    Скачать 1.8 Mb.
    НазваниеОбщая Физиология 1 Аналитический и системный подход к изучению функций организма При аналитическом подходе
    Дата20.12.2021
    Размер1.8 Mb.
    Формат файлаdoc
    Имя файлаotvety_teoria.doc
    ТипДокументы
    #311423
    страница15 из 32
    1   ...   11   12   13   14   15   16   17   18   ...   32


    19. Гуморальная регуляция тонусов сосудов и её особенности.Гуморальная регуляция осуществляется веществами системного и местного действия. К веществам системного действия относятся ионы кальция, калия, натрия, гормоны. Ионы кальция вызывают сужение сосудов, ионы калия оказывают расширяющее действие.

    Действие гормонов на тонус сосудов:

    вазопрессин – повышает тонус гладкомышечных клеток артериол, вызывая сужение сосудов;

    адреналин оказывает одновременно и суживающее и расширяющее действие, воздействуя на альфа1-адренорецепторы и бета1-адренорецепторы, поэтому при незначительных концентрациях адреналина происходит расширение кровеносных сосудов, а при высоких – сужение;

    тироксин – стимулирует энергетические процессы и вызывает сужение кровеносных сосудов;

    ренин – вырабатывается клетками юкстагломерулярного аппарата и поступает в кровоток, оказывая воздействие на белок ангиотензиноген, который переходит в ангиотезин II, вызывающий сужение сосудов.

    Метаболиты (углекислый газ, пировиноградная кислота, молочная кислота, ионы водорода) воздействуют на хеморецепторы сердечно-сосудистой системы, приводя к рефлекторному сужению просвета сосудов.

    К веществам местного воздействия относятся:

    медиаторы симпатической нервной системы – сосудосуживающее действие, парасимпатической (ацетилхолин) – расширяющее;

    биологически активные вещества – гистамин расширяет сосуды, а серотонин суживает;

    кинины – брадикинин, калидин – оказывают расширяющее действие;

    простогландины А1, А2, Е1 расширяют сосуды, а F2α суживает.

    Сужение и расширение сосудов в организме имеют различное функциональное назначение. Сужение сосудов обеспечивает перераспределение крови в интересах целого организма, в интересах жизненно важных органов, когда, например, в экстремальных условиях отмечается несоответствие между объемом циркулирующей крови и емкостью сосудистого русла. Расширение сосудов обеспечивает приспособление кровоснабжения к деятельности того или иного органа или ткани.

    20. Приспособительные изменения кровотока и АД как компонент целостной поведенческой деятельности организма.

    Постоянно колеблющаяся потребность в кислороде удовлетворяется путем включения ряда физиологических приспособительных реакций. Наиболее важные из них: увеличение минутного объема сердца (за счет учащения сердечных сокращений и увеличения ударного или систолического объема сердца), увеличение скорости кровотока, снижение периферического сопротивления сосудов, расширение сосудов интенсивно работающих органов и перераспределение крови, углубление и учащение дыхания, выход эритроцитов из депо крови и усиление гемопоэза. При различного рода поражениях сердечно-сосудистой системы эти механизмы компенсации еще продолжают включаться и обеспечивают необходимое для организма количество кислорода. Но по мере дальнейшего повреждения компенсаторные реакции ослабевают, возникает состояние недостаточности кровообращения.

    Кровообращение при вертикальном положении тела (ортостатика). При переходе из положения «лежа» в положение «стоя» в венах нижних конечностей происходит депонирование крови в объеме от 1/10 до 1/5 ОЦК, снижается венозный возврат крови к сердцу, МОК уменьшается на 40%, АД падает. Падению АД препятствуют реакции, компенсирующие действие силы тяжести.
    Физиология системы дыхания
    1.Функциональная система дыхания: компоненты, полезный приспособительный результат.

    Дыхание как одну из функций организма осуществляет функциональная система дыхания, которая, в свою очередь, может быть подразделена на несколько звеньев:

    1.система легочного(внешнего) дыхания, осуществляющая газообмен между наружной и внутренней средой организма (воздухом и кровью);

    2.система кровообращения, обеспечивающая транспорт газов к тканям и от них, а также рациональное распределение крови в организме;

    3.кровь, которая осуществляет перенос газов от легких к тканям;

    4система внутреннего (тканевого) дыхания — комплекс окислительных ферментов и тканевых переносчиков углекислоты, осуществляющий непосредственный процесс внутриклеточного окисления;

    5.нейрогуморальный аппарат регуляции процесса дыхания на различных уровнях.

    Дыха́тельная систе́ма челове́ка — совокупность органов, обеспечивающих функцию внешнего дыхания человека (газообмен между вдыхаемым атмосферным воздухом и циркулирующей по малому кругу кровообращения кровью).

    Газообмен осуществляется в альвеолах лёгких, и в норме направлен на захват из вдыхаемого воздуха кислорода и выделение во внешнюю среду образованного в организме углекислого газа.

    Нормальный газообмен зависит от интеграции нескольких взаимосвязанных функциональных компонентов системы дыхания, которые должны обеспечивать адаптацию организма к физической нагрузке и разнообразным патологическим состояниям. Четыре главных функциональных компонента включают: (1)центральную нервную систему (ЦНС); (2) "грудные мехи", состоящие из периферической нервной системы, дыхательных мышц и грудной стенки; (3) воздухоносные пути и (4) альвеолярные газообменивающие единицы.

    В процессе дыхания различают три звена: внешнее, или легочное, дыхание, транспорт газов кровью и внутреннее, или тканевое, дыхание.

    Внешнее дыхание — это газообмен между организмом и окружающим его атмосферным воздухом. Осуществляется в два этапа — обмен газов между атмосферным и альвеолярным воздухом и газообмен между кровью легочных капилляров и альвеолярным воздухом. Аппарат внешнего дыхания включает в себя дыхательные пути, легкие, плевру, скелет грудной клетки и ее мышцы, а также диафрагму. Основной функцией аппарата внешнего дыхания является обеспечение организма кислородом и освобождение его от избытка углекислого газа. О функциональном состоянии аппарата внешнего дыхания можно судить по ритму, глубине, частоте дыхания, по величине легочных объемов, по показателям поглощения кислорода и выделения углекислого газа и т. Д.

    Транспорт газов осуществляется кровью. Он обеспечивается разностью парциального давления (напряжения) газов по пути их следования: кислорода от легких к тканям, углекислого газа от клеток к легким.

    Внутреннее или тканевое дыхание также может быть разделено на два этапа. Первый этап - обмен газов между кровью и тканями. Второй — потребление кислорода клетками и выделение ими углекислого газа (клеточное дыхание).

    2. Физиологическая сущность дыхания, этапы транспорта кислорода и углекислого газа.

    Дыхание — физиологическая функция, обеспечивающая газообмен (О2 и СО2) между окружающей средой и организмом в соответствии с его метаболическими потребностями. Дыхание протекает в несколько стадий: 1) внешнее дыхание — обмен О2 и СО2 между внешней средой и кровью легочных капилляров. В свою очередь внешнее дыхание можно разделить на два процесса: а) газообмен между внешней средой и альвеолами легких, что обозначается как «легочная вентиляция»; б) газообмен между альвеолярным воздухом и кровью легочных капилляров; 2) транспорт О2 и СО2 кровью; 3) обмен О2 и СО2 между кровью и клетками организма; 4) тканевое дыхание.

    Дыхание осуществляет перенос Ог из атмосферного воздуха к клеткам организма, а в обратном направлении производит удаление СО2, который является важнейшим продуктом метаболизма клеток. Транспорт О2 и СО2 в организме человека и животных на значительные расстояния, например в пределах воздухоносных путей, легких и в системе кровообращения, осуществляется конвекционно. Перенос О2 и СО2 на незначительные расстояния, например между альвеолярным воздухом и кровью, а также между кровью и клетками тканей организма осуществляется путем диффузии. Каждая из стадий дыхательной функции в соответствии с метаболическими потребностями клеток организма регулируется нервными и гуморальными механизмами.
    3.Плевральная полость. Структурно-функциональные особенности и значение для дыхания. Биомеханика вдоха и выдоха. Пневмоторакс.

    Плевральная полость — щелевидное пространство между париетальным и висцеральным листками плевры, окружающими каждое лёгкое. Плевра представляет собой гладкую серозную оболочку. Париетальный (наружный) листок плевры выстилает стенки грудной полости и наружные поверхности средостения, висцеральный (внутренний) покрывает лёгкое и его анатомические структуры (сосуды, бронхи и нервы). В норме плевральные полости содержат незначительное количество серозной жидкости.

    Плевральная полость с формирующими её плевральными листками помогают осуществлению акта дыхания. Содержащаяся в плевральных полостях жидкость способствует скольжению листков плевры друг относительно друга при вдохе и выдохе. Герметичность плевральных полостей, постоянно поддерживающая в них давление ниже атмосферного, а также поверхностное натяжение плевральной жидкости, способствуют тому, что лёгкие постоянно удерживаются в расправленном состоянии и прилежат к стенкам грудной полости. Благодаря этому, дыхательные движения грудной клетки передаются плевре и лёгким.

    Она создает надежную и естественную протекцию для легочной системы. Благодаря этому воздух не просачивается в грудную клетку, что снижает процесс трения между областью легких и стенками грудины. Говоря о слоях плевральной полости, следует отметить, что к ним относится: внутренний; висцеральный листок плевры, покрывающие легкие; наружный и париетальный, выстилающий стенки грудной клетки и диафрагму.

    Перед очередным вдыханием воздуха в легких находится под давлением, равным атмосферному, а плевральными давление ниже атмосферного на 5 см вод. ст. Во время вдоха последовательность процессов такова: по нервам импульсы поступают в инспираторных мышц, они сокращаются, и вследствие этого увеличиваются размеры грудной клетки во всех плоскостях. Это сопровождается снижением внутриплеврального давления. Параллельно увеличение размеров грудной клетки увеличивается объем легких. При растяжении легких воздух, что у них есть, распределяется в большем объеме. Это приводит к уменьшению давления в легких. Через градиент давления, возникшего при открытых дыхательных путях, воздух поступает в легкие и давление в них снова выравнивается с атмосферным. По мере углубления вдоха в растянутых легких возрастает эластичный сопротивление и для растяжения легких нужна большая сила (чтобы преодолеть внутриплеврального давления). В стеклянный сосуд без дна помещают легкие. Сосуд имитирует грудную клетку. Снизу она закрыта резиновой пленкой, имитирующей диафрагму. Когда оттянуть «диафрагму» вниз, снизится "внутриплеврально» давление, легкие расширятся, и в них поступит воздуха.Энергия инспираторных мышц расходуется не только на преодоление аэродинамического сопротивления воздуха. Часть ее идет на преодоление эластичного и неэластичного сопротивления тканей внутренних органов, брюшной и грудной стенок, а часть - на преодоление гравитационных сил, которые противодействуют поднятию плечевого пояса и грудной клетки. То есть часть энергии переходит употенциальну энергию. После сокращения инспираторных мышц эта потенциальная энергия обеспечивает пассивный выдох. При этом ребра и плечевой пояс опускается, а диафрагма поднимается. Вследствие этого внутриплевральное давление увеличивается от -7 до -5 см вод. ст. Эластичный и поверхностного натяжения растянутых перед этим легких уже не уравновешиваются внутриплевральное давление, и легкие начинают спадатися. Давление в легких становится выше атмосферного, и воздух выходит через воздухоносные пути. Если запасной потенциальной энергии недостаточно для выдоха, то подключаются экспираторная мышцы. Для выполнения глубокого вдоха нужно интенсивнее расширения грудной клетки. Естественно, что чем глубже вдох, тем больше мышц должно сокращаться: подключаются мышцы, поднимающие ребра, грудную клетку. Легкие растягиваются с большими скоростью и силой, что приводит к увеличению объема и скорости поступления воздуха в дыхательные пути. В конце глубокого выдоха накапливается больше потенциальной энергии. Но, несмотря на это, для выполнения форсированного выдоха обязательно должны подключаться экспираторная мышцы, которые ускоряют и усиливают обратные движения диафрагмы, грудной клетки, легких.

    Пневмото́ракс— скопление воздуха или газов в плевральной полости. Он может возникнуть спонтанно у людей без хронических заболеваний лёгких («первичный»), а также у лиц с заболеваниями лёгких («вторичный») и искусственный пневмоторакс (введение воздуха в плевральную полость, приводящее к коллапсу поражённого лёгкого). Многие пневмотораксы возникают после травмы грудной клетки или как осложнение лечения.

    Воздух или газ может попадать в плевральную полость снаружи (при открытом повреждении грудной клетки и сообщении с внешней средой) или из внутренних органов (например, при травматическом разрыве лёгкого при закрытой травме, либо при разрыве эмфизематозных пузырей, «булл», при минимальной травме или кашле, спонтанный пневмоторакс). В норме лёгкое расправлено за счёт того, что в плевральной полости, как правило, давление меньше, чем в самом легком. Поэтому при попадании туда воздуха лёгкое спадается.

    Виды пневмоторакса: Закрытый пневмоторакс. При этом виде в плевральную полость попадает небольшое количество газа, которое не нарастает. Сообщение с внешней средой отсутствует. Считается самым лёгким видом пневмоторакса, поскольку воздух потенциально может самостоятельно постепенно рассосаться из плевральной полости, при этом лёгкое расправляется.

    Открытый пневмоторакс. При открытом пневмотораксе плевральная полость сообщается с внешней средой, поэтому в ней создаётся давление, равное атмосферному. При этом лёгкое спадается, поскольку важнейшим условием для расправления лёгкого является отрицательное давление в плевральной полости. Спавшееся лёгкое выключается из дыхания, в нём не происходит газообмен, кровь не обогащается кислородом.

    Клапанный пневмоторакс. Этот вид пневмоторакса возникает в случае образования клапанной структуры, пропускающей воздух в одностороннем направлении, из лёгкого или из окружающей среды в плевральную полость, и препятствующее его выходу обратно. При этом с каждым дыхательным движением давление в плевральной полости нарастает.

    4. Физиологические механизмы газообмена и транспорта газов. Парциальное давление и напряжение газов в крови.

    Транспорт газов осуществляется кровью. Он обеспечивается разностью парциального давления (напряжения) газов по пути их следования: кислорода от легких к тканям, углекислого газа от клеток к легким.

    Транспорт газов реализуется двумя механизмами: • кинетической энергией дыхательных мышц и эластическим каркасом легочной ткани, а также энергией сократительного миокарда; • диффузией газов.

    Первый механизм обеспечивает транспорт газов за счет разности давления струи воздуха в дыхательных путях и гидростатического давления в сосудистой системе. Второй — на основе диффузии газов из зоны высокого парциального давления в зону с более низким давлением. Первый механизм реализует транспорт газов в основном, на 1 и 3 этапах, второй — на 2 и 4. Мы подчеркнули словосочетание «в основном» исходя из того, что на участке транспорта газов из внешней среды до альвеол могут иметь место и процессы диффузии, т.к. по мере прохождения воздуха по дыхательной трубке в нем увеличивается содержимое водяного пара и, следовательно, снижается парциальное давление кислорода. Кроме того, по мере диффузии кислорода через альвеоло-капиллярную мембрану парциальное давление кислорода в альвеоле снижается. Все это обусловливает более низкое парциальное давление кислорода в альвеоле и создает определенный градиент напряжения кислорода во вдыхаемом и альвеолярном газе

    Дыхание состоит из следующих основных этапов: -внешнего или легочного дыхания, обеспечивающего газообмен между легкими и внешней средой;-газообмена между альвеолярным воздухом и притекающей к легким венозной кровью; -транспорта газов кровью;-газообмена между артериальной кровью и тканями; -тканевого или внутреннего дыхания(потребление кислорода клетками).

    Механизм газообмена в лёгких и тканях осуществляется следующим образом: наружная поверхность альвеол соприкасается с капиллярами малого круга. От альвеолярного воздуха кровь отделяет альвеоло-капиллярная мембрана. Газообмен осуществляется в результате диффузии кислорода из альвеолярного воздуха в кровь и СО2 из крови в альвеолярный воздух.Диффузия происходит вследствие разности парциального давления этих газов в альвеолярном воздухе и их напряжением в крови. Парциальное давление – это та часть давления, которая приходится на данный газ в смеси газов.

    Для газов, растворенных в жидкости, употребляется термин «напряжение», соответствующий термину «парциальное давление» для свободных газов. Напряжение выражается в тех же единицах, что и давление, т.е.в атмосферах или в миллиметрах ртутного или водяного столба. Если напряжение газа равно 1,00 мм рт. ст., то это означает, что растворенная в жидкости газ находится в равновесии со свободным газом, находящихся под давлением 100 мм.

    Парциа́льное — давление отдельно взятого компонента газовой смеси[1][2]. Общее давление газовой смеси является суммой парциальных давлений её компонентов. В среднем парциальное давление кислорода при нормальных атмосферных условиях поддерживается в альвеолярном воздухе на уровне

    102 мм рт.ст., а двуокиси углерода — на уровне около 40 мм рт.ст.
    5. Гипоксия и её виды: физиологическое обоснование коррекции гипоксии.

    Гипокси́я— пониженное содержание кислорода в организме или отдельных органах и тканях. Гипоксия возникает при недостатке кислорода во вдыхаемом воздухе и в крови (гипоксемия), при нарушении биохимических процессов тканевого дыхания. Вследствие гипоксии в жизненно важных органах развиваются необратимые изменения. Наиболее чувствительными к кислородной недостаточности являются центральная нервная система, мышца сердца, ткани почек, печени. Для уменьшения гипоксии пользуются фармакологическими средствами и методами, увеличивающими доставку в организм кислорода и улучшающими утилизацию организмом циркулирующего в нём кислорода, уменьшающие потребность в кислороде органов и тканей.

    Гипоксическая (экзогенная) — при снижении парциального давления кислорода во вдыхаемом воздухе (низкое атмосферное давление, закрытые помещения, высокогорье);

    Виды: Дыхательная (респираторная) — при нарушении транспорта кислорода из атмосферы в кровь (дыхательная недостаточность); Гемическая (кровяная) — при снижении кислородной ёмкости крови (анемия; инактивация гемоглобина угарным газом или окислителями);

    Циркуляторная — при недостаточности кровообращения (сердца либо сосудов), сопровождается повышением артериовенозной разницы по кислороду;

    Тканевая (гистотоксическая) — при нарушении использования кислорода тканями (пример: цианиды блокируют цитохромоксидазу — фермент дыхательной цепи митохондрий);

    Перегрузочная — вследствие чрезмерной функциональной нагрузки на орган или ткань (в мышцах при тяжёлой работе, в нервной ткани во время эпилептического приступа);

    Смешанная — любая тяжелая/длительная гипоксия приобретает тканевой компонент (гипоксия → ацидоз → блокада гликолиза → отсутствие субстрата для окисления → блокада окисления → тканевая гипоксия). Техногенная — возникает при постоянном пребывании в среде с повышенным содержанием вредных выбросов

    По распространенности процесса: Местная, общая

    По скорости развития: Молниеносная Острая Подострая Хроническая

    В общем случае гипоксию можно определить как несоответствие энергопродукции энергетическим потребностям клетки. Основное звено патогенеза — нарушение окислительного фосфорилирования в митохондриях.
    1   ...   11   12   13   14   15   16   17   18   ...   32


    написать администратору сайта