Главная страница

Общая Физиология 1 Аналитический и системный подход к изучению функций организма При аналитическом подходе


Скачать 1.8 Mb.
НазваниеОбщая Физиология 1 Аналитический и системный подход к изучению функций организма При аналитическом подходе
Дата20.12.2021
Размер1.8 Mb.
Формат файлаdoc
Имя файлаotvety_teoria.doc
ТипДокументы
#311423
страница9 из 32
1   ...   5   6   7   8   9   10   11   12   ...   32

 Надпочечники.


Парные железы, расположенные над верхними концами почек. Масса обеих желез по 15 г. В каждой железе имеется плотная соединительно-тканная капсула, проникающая внутрь железы и делящая её на два слоя; наружный - корковое вещество и внутренний - мозговое вещество.

Гормоны коркового вещества – кортикостероиды вырабатывают 3 зоны:

Клубочковая зона, самая поверхностная, вырабатывает гормоны – минералокортикоиды (альдостерон, дезоксикортикостерон), которые влияют на водно-солевой обмен, тем самым действуя на почки. Избыток этих гормонов приводит к задержке воды и повышению АД, а их недостаток - к обезвоживанию организма.

Пучковая зона (средняя) выделяет гормоны - глюкокортикоиды(кортизон и кортикостерон), которые являются мощными иммунодепрессантами (подавляют воспалительные реакции) и десенсебилизатороми (подавляют аллергические проявления). Также глюкокортикоиды влияют на углеводный обмен, стимулируют синтез гликогена в мышцах, тем самым повышая работоспособность. Особенно велика роль их при больших мышечных напряжениях, действии сверхсильных раздражителей, недостатке кислорода. В подобных условиях вырабатывается большое количество глюкокортикоидов, которые обеспечивают приспособление организма к этим чрезвычайным условиям (стресс-реакция).

3. Сетчатая зона вырабатывает половые гормоны - андрогены (мужские) и эстрогены и прогестерон(женские). Они влияют на развитие скелета и формирование вторичных половых признаков. Выработка гормонов противоположного пола тормозится половыми железами. Поэтому при кастрации (удаление половых желез) развиваются вторичные половые признаки противоположного пола. Те же явления наблюдаются при гиперфункции сетчатой зоны.

Гиперфункция надпочечников приводит к развитию бронзовой, или адиссоновой болезни.

Она характеризуется, кроме бронзовой окраски кожи (отсюда название), резким похуданием, мышечной слабостью, гипотонией.

Мозговое вещество надпочечников вырабатывает катехоламины - адреналини норадреналин. Главный гормон - адреналин - имеет широкий диапазон действия. Он оказывает влияние на ССС, в частности сужает сосуды, тормозит движения пищеварительного тракта, вызывает расширение зрачка, восстанавливает работоспособность утомлённых мышц, усиливает углеводный обмен, суживает сосуды кожи и другие периферические сосуды. Выход адреналина в кровь связан и с возбуждением симпатической нервной системы. При различных экстремальных состояниях (охлаждение, чрезмерное мышечное напряжение, боль, ярость, страх – стресс-реакция) в крови увеличивается содержание адреналина.

Второй гормон - норадреналин - способствует поддержанию тонуса кровеносных сосудов. Норадреналин, кроме того, вырабатывается в синапсах и участвует в передаче возбуждения с симпатических нервных волокон на иннервируемые органы.

Недостатка катехоламинов в крови не наблюдается, так как они могут вырабатываться в организме другими хромофильными тканями. Избыток их возникает при опухолях надпочечников и при резко увеличенной выработке этих гормонов. В результате возникает, беспредельная нагрузка на ССС, АД достигает более 300 мм рт. ст.

 Поджелудочная железа.


Относится к железам со смешанной функцией. Эндокринной частью поджелудочной железы являютсяостровки Лангерганса, расположенные преимущественно в хвостовой части железы. Бета-клетки островков Лангерганса образуют гормонинсулин, альфа-клетки синтезируют глюкагон.

Инсулин принимает участие в регуляции углеводного обмена. Под действием гормона происходит уменьшение концентрации сахара в крови – возникает гипогликемия. Образование инсулина регулируется уровнем глюкозы в крови. Гипергликемия приводит к увеличению поступления инсулина в кровь. Гипогликемия уменьшает образование и поступление гормона в сосудистое русло.

Недостаточность внутрисекреторной функции поджелудочной железы приводит к развитию сахарного диабета, основными проявлениями которого являются: гипергликемия, глюкозурия (сахар в моче), полиурия (увеличенное выделение мочи), полифагия (повышенный аппетит), полидипсия (повышенная жажда).

Глюкагон участвует в регуляции углеводного обмена. По характеру своего действия на обмен углеводов он является антагонистом инсулина. Под влиянием глюкагона происходит расщепление гликогена в печени до глюкозы. В результате этого концентрация глюкозы в крови повышается. Кроме того, глюкагон стимулирует расщепление жира в жировой ткани.

Регуляция секреции глюкагона. На образование глюкагона в альфа-клетках островков Лангерганса оказывает влияние количество глюкозы в крови. При повышенном содержании глюкозы в крови происходит торможение секреции глюкагона, при пониженном — увеличение. На образование глюкагона оказывает влияние и гормон передней доли гипофиза — соматотропин, он повышает активность альфа-клеток, стимулируя образование глюкагона.

Регуляция железвнутренней секреции осуществляется сложным нейрогуморальным путём. Основная роль в этом принадлежит комплексу гипофиз-гипоталамус (часть промежуточного мозга). Гипоталамус оказывает два вида влияния: либо по нисходящим нервным путям, либо через гипофиз (гуморальный путь). Важнейшим фактором, влияющим на образование гормонов, является состояние регулируемых ими процессов и уровня концентрации тех или иных веществ в крови.

10)Структурно-функциональная характеристика гипоталамо-гипофизарной системы

В основном, регуляция внутри эндокринной системы осуществляется посредством гормональных и нейрогормональных механизмов. Высшим центром нейрогормонального управления, который осуществляет переключение регуляции с нервной системы на эндокринную, является гипоталамо-гипофизарная система. Она включает в себя гипоталамус – один из отделов промежуточного мозга и гипофиз – эндокринную железу, которая локализуется в головном мозге.

В гипоталамо-гипофизарном структурно-функциональном объединении различают две относительно самостоятельные системы. Первая система состоит из супраоптического ипаравентрикулярного ядер гипоталамуса, которые связаны с гипофизом гипоталамо-гипофизарным нервным трактом.

Вторая система состоит из гипофизотропной зоны гипоталамуса, которая связана с гипофизом венозной сосудистой сетью. В гипофизотропной зоне гипоталамуса синтезируются нейрогормоны, которые называют рилизинг-факторами.

Нейрогормон - это специфические биологически активные вещества, которые вырабатываются нервными клетками и оказывают регулирующее влияние на функции клеток-мишеней вдали от места своего образования.

Через воротную венозную сосудистую сеть нейрогормоны поступают в гипофиз, где оказывают регулирующее влияние на его гормонообразовательную функцию.

Выделяют две группы рилизинг-факторов: либерины и статины.

Либерины стимулируют синтез и секрецию гормонов гипофиза. К ним относятся:

1) кортиколиберин,

2) тиролиберин,

3) гонадолиберины - люлиберин (рилизинг-фактор лютеинизирующего гормона) и фолиберин (рилизинг-фактор фолликулостимулирующего гормона),

4) соматолиберин,

5) пролактолиберин,

6) меланолиберин.

Статины угнетают образование и выделение гормонов гипофиза. К ним относятся:

1) соматостатин,

2) меланостатин,

3) пролактостатин.

Нейрогормональная регуляция гормонообразовательной функции осуществляется автоматически по кибернетическому принципу обратной связи. При избытке эффекторного гормона в крови тормозится синтез и выделение либеринов, а статинов - активируется. В случае недостатка эффекторного гормона, наоборот, инкреция активаторов увеличивается, а ингибиторов – снижается.

Анатомически в гипофизе выделяют переднюю, среднюю (промежуточную) и заднюю доли. Промежуточная доля гипофиза у человека слабо выражена. Вместе с передней долей они функционально объединяются в аденогипофиз.

В передней доле гипофиза синтезируется две группы гормонов белково-пептидной природы - тропные и эффекторные.

Тропные гормоны передней доли гипофиза – тиротропный (тиротропин), адренокортикотропный (кортикотропин) и гонадотропные (гонадотропины), регулируют секреторную функцию других эндокринных желез.

Тиротропныйгормон (ТТГ) стимулирует деятельность щитовидной железы.Адренокортикотропныйгормон (АКТГ) стимулирует деятельность коры надпочечников.

К гонадотропинам, которые обеспечивают репродуктивные процессы, относятсялютеинизирующийи фолликулостимулирующий гормоны.

Лютеинизирующийгормон (ЛГ) является ключевым для выработки мужских и женских половых гормонов. У женщин он также стимулирует овуляцию – выход женских половых клеток (яйцеклеток) из яичника. Фолликулостимулирующийгормон (ФСГ) у мужчин стимулирует разрастание сперматогенного эпителия и активирует сперматогенез. У женщин ФСГ стимулирует рост и развитие фолликулов яичников.

Физиологические эффекты гонадотропинов связаны с их стимулирующим действием на половые железы. Поэтому при поражении аденогипофиза наблюдается атрофия половых желез.

Эффекторныегормоны передней доли гипофиза – соматотропный (соматотропин,гормон роста), пролактин и липотропины, непосредственно влияют на исполнительные органы (эффекторные органы) и клетки-мишени.

Соматотропный гормон(СТГ):

1) стимулирует развитие мягких тканей организма, а также линейный рост трубчатых костей,

2) оказывает прямое анаболическое влияние на белковый обмен (стимулирует транспорт аминокислот в клетки, а также биосинтез белка из аминокислот),

3) в физиологических концентрациях повышает уровень глюкозы в крови,

4) стимулирует липолиз (расщепление жиров) и мобилизацию жира из депо.

 

Избыточное образование и выделение СТГ у детей приводит к развитию гигантизма, который проявляется в пропорциональном увеличении размеров тела. У взрослых избыток СТГ приводит к акромегалии - неравномерному разрастанию костей скелета, а также к спланхомегалии - разрастанию внутренних органов.

Недостаточная внутренняя секреция СТГ у детей вызывает гипофизарный нанизм (карликовость), который проявляется в задержке физического, а также полового развития.

 

Основной физиологический эффект пролактина у мужчин - стимуляция деятельности простаты и семенников. У женщин он стимулирует образование молока грудными железами во время лактации,

Основным физиологическим эффектом липотропинов является прямое жиромобилизующее и липолитическое действие.

В промежуточной доле гипофиза продуцируется эффекторныймеланоцитстимулирующий гормон (МСГ, меланотропин). Основной физиологический эффект МСГ - активация пигментного обмена в клетках.

 

У человека меланотропин вырабатывается в небольших количествах и, поэтому, не играет существенной роли в пигментном обмене. Его значение возрастает у животных, покрытых шерстью, а также у существ, способных изменять окраску покровов тела (хамелеон, осьминог, некоторые виды рыб).

 

Клетки задней доли гипофиза (нейрогипофиз) не синтезируют гормоны. Они выполняют функцию депо окситоцина и вазопрессина, которые продуцируются нейронами супраоптического и паравентрикулярного ядер гипоталамуса.

Основные физиологические эффекты окситоцина:

1) стимулирует сокращение гладкой мускулатуры матки,

2) стимулирует сокращение миоэпителиальных клеток грудных желез, повышая выделение молока во время кормления грудного ребенка.

Поступление окситоцина в кровь увеличивается при беременности, особенно перед родами, и в период лактации.

Основные физиологические эффекты вазопрессина (антидиуретический гормон, АДГ):

1) в больших концентрациях повышает артериальное давление за счет сокращения гладкой мускулатуры артериол,

2) уменьшает выделение мочи (диурез) за счет снижения реабсорбции воды в почках.

Синтез АДГ в гипоталамусе и выделение его из задней доли гипофиза возрастает:

1) при гиповолемии - уменьшении объема циркулирующей крови,

2) при гиперосмии – увеличении осмотического давления плазмы крови,

3) при переживании боли, повышении психоэмоционального напряжения и стрессах.

11)Физиологические основы гормональной регуляции обмена веществ и энергии, минерального тонуса

Высшие нервные центры регуляции энергетического обмена и обмена веществ находятся в гипоталамусе. Они влияют на эти процессы через вегетативную нервную систему и гипоталамо-гипофизарную систему. Симпатический отдел ВНС стимулирует процессы диссимиляции, парасимпатический ассимиляцию. В нем же находятся центры регуляции водно-солевого обмена. Но главная роль в регуляции этих базисных процессов принадлежит железам внутренней секреции. В частности инсулин и глюкагон регулируют углеводный и жировой обмены. Причем инсулин тормозит выход жира из депо. Глюкокортикоиды надпочечников стимулируют распад белков. Соматотропин наоборот усиливает синтез белка. Минералокортикоиды натрий-калиевый. Основная роль в регуляции энергетического обмена принадлежит тиреоидным гормонам. Они резко усиливают его. Они же главные регуляторы белкового обмена. Значительно повышает энергетический обмен и адреналин. Большое его количество выделяется при голодании.

12) Регуляция мышечного тонуса

Скелетные мышцы всегда находятся в состоянии мышечного тонуса, т.е. мышечный тонус – это постоянное незначительное напряжение мышц, которое не сопровождается признаками утомления. Мышечный тонус имеет рефлекторную природу. Источник возбуждения для поддержания мышечного тонуса – проприорецепторы. Существует два главных типа проприорецепторов:
а) Мышечные веретёна (интрафузальные мышечные волокна) параллельно соединениы с экстрафузальными мышечными волокнами (скелетными мышцами). М.в. покрыты капсулой. Длина веретена – 4-7мм, толщина – 15-30мкм. Периферические участки веретена поперечно исчерчены и способны сокращаться. М.в. являются рецепторами растяжения. Они растягиваются вместе с мышцей. Вокруг средней части мышечного веретена несколько раз обвивается окончание одного афферентного волокна. Наряду с сенсорной, у мышечных веретён есть и двигательная иннервация. Она осуществляется Aγ-волокнами, т.е. аксонами γ-мотонейронов. Синапсы аксонов γ-мотонейронов располагаются на веретёнах, в их сократимой части. Импульсация γ-мотонейронов вызывает сокращение периферических концов мышечных веретён, и, следовательно, их растяжение. Т.о. обеспечивается поддержание мышечного тонуса. Этот механизм называется γ-петлёй. Активность γ-мотонейронов регулируется супраспинальными структурами (находящимися выше головного мозга). В поддержании постоянного мышечного тонуса участвует и спонтанная импульсация γ-мотонейронов.
б) Сухожильные органы Гольджи. Находятся в сухожилиях всех мышц вблизи от сухожильно-мышечного соединения. Сухожильные рецепторы состоят из сухожильных нитей, заключённых в соединительнотканную капсую. Между этими сухожильными нитями сильно разветвляются окончания афферентного волокна. Сухожильные органы соединяются с мышцей последовательно, поэтому возбуждаются главным образом при напряжении или сокращении мышц. При снижении тонуса экстрафузального мышечного волокна увеличивается его длина. Это приводит к растяжению мышечных веретён и раздражению нервных окончаний. Возбуждение поступает в спинной мозг к ά-мотонейронам, приводит к сокращению мышечного волокна и восстановлению тонуса.
Избыточное сокращение экстрафузальных мышечных волокон приводит к растяжению сухожильных органов Гольджи, после чего нервный импульс через вставочный тормозной нейрон уменьшает активность ά-мотонейронов, и происходит снижение тонуса. Т.о. с помощью двух рецепторов регулируется мышечный тонус. Рецепторы Гольджи препятствуют перенапряжению мышцы.
Такая регуляция мышечного тонуса, осуществляемая на уровне спинного мозга, называется спинальным или простейшим тонусом. Этот тонус очень слабый, поэтому в поддержании мышечного тонуса участвуют также и стволовые центры.
13) Уровни регуляции двигательных функций человека

Управление движениями обеспечивается сложной функциональной системой, иерархически организованной, включающей много уровней и подуровней, характеризующейся сложными афферентными и эфферентными звеньями. Во время движений ЦНС решает следующие задачи:
1- определяет цель движения;
2- выбирает тип движения в зависимости от цели;
3- организует соответственные данному типу стереотипные движения;
4- приспосабливает движения к внешним условиям.
5- Поддерживает позу и равновесие во время движения
В решение поставленных задач включаются практически все отделы ЦНС (от коры больших полушарий до спинного мозга), каждый уровень выполняет свою конкретную задачу, и чем выше уровень, тем сложнее задача. В зависимости от выполняемых задач выделяют следующие уровни управления движениями:
1 – рефлекторный, обеспечивает стереотипные врожденные фазные и тонические рефлексы, это уровень спинного мозга и ствола головного мозга.
2-уровень синергий, т.е. согласованных и координированных движений, обеспечивается подкорковыми (базальными) ядрами и мозжечком.
3- Уровень синтетического сенсорного поля обеспечивает приспособление движений к внешнему миру на основании анализа и синтеза афферентных сигналов, поступающих от множества рецепторов. В этом принимают участие высшие отделы ЦНС: ассоциативные и двигательные зоны КБП.
4- Уровень целенаправленных действий (праксиса) обеспечивает разработку программ и контроль за выполнением быстрых целенаправленных движений.
Все уровни взаимодействуют между собой по принципу иерархии и субординации: вышележащий уровень контролирует функцию нижележащего, причем вышележащий отдел оказывает тормозное влияние на нижележащий. Согласованная деятельность двигательных центров, контролирующих тонус и фазные движения различных групп мышц осуществляется на основе принципов реципрокности и доминанты, а коррекция движений достигается принципом обратной связи.

Физиология внутренней среды организма
1.Понятие о системе крови и её свойствах. Основные функции крови.

Кровь – это физиологическая система, которая включает в себя:

· периферическую (циркулирующую и депонированную) кровь;

· органы кроветворения;· органы кроверазрушения;

· механизмы регуляции.

Кровь как ткань обладает следующими особенностями:

1. все ее составные части образуются за пределами сосудистого русла;

2. межклеточное вещество ткани является жидким;

3. основная часть крови находится в постоянном движении.

Кровь - основная транспортная система организма. Это жидкая красная непрозрачная жидкость, которая состоит из бледно-желтой плазмы и форменных элементов - эритроцитов, лейкоцитов и тромбоцитов. Главным местом образования клеток крови является костный мозг.

В регуляции деятельности системы крови важную роль играют гуморальные факторы - эритропоетины, лейкопоетины, тромбопоетины. Кроме них действуют гормоны (андрогены, катехоламины, тиреоидные гормоны). Медиаторы (ацетилхолин, адреналин) влияют на систему крови, вызывают перераспределение форменных элементов, и непосредственно действуют на холино- и адренорецепторы клеток. Определенное влияние имеет также нервная система.

Кровь, циркулирующая в сосудах, выполняет перечисленные ниже функции.

Транспортнаяперенос различных веществ: кислорода, углекислого газа, питательных веществ, гормонов, медиаторов, электролитов, ферментов и др.

Дыхательная(разновидность транспортной функции) – перенос кислорода от легких к тканям организма, углекислого газа – от клеток к легким.

Трофическая(разновидность транспортной функции) – перенос основных питательных веществ от органов пищеварения к тканям организма.

Экскреторная(разновидность транспортной функции) транспорт конечных продуктов обмена веществ (мочевины, мочевой кислоты и др.), избытка воды, органических и минеральных веществ к органам их выделения (почки, потовые железы, легкие, кишечник).

Терморегуляторная – перенос тепла от более нагретых органов к менее нагретым.

Защитная – осуществление неспецифического и cпецифического иммунитета; свертывание крови предохраняет от кровопотери при травмах, транспорт бактерицидных веществ (лизоцим, антитела) клеток, например, способных к фагоцитозу.

Регуляторная (гуморальная) – доставка гормонов, пептидов, ионов и других физиологически активных веществ от мест их синтеза к клеткам организма, что позволяет осуществлять регуляцию многих физиологических функций.

Гомеостатическая – поддержание постоянства внутренней среды организма (кислотно-основного равновесия, водно-электролитного баланса и др.).

2. Состав крови человека. Константы крови и механизмы поддержания их постоянства.
Состав крови: Кровь состоит из жидкой части плазмы и взвешенных в ней форменных элементов: эритроцитов, лейкоцитов и тромбоцитов. На долю форменных элементов приходится 40 – 45%, на долю плазмы – 55 – 60% от объема крови. Это соотношение получило название гематокритного соотношения, или гематокритного числа.

Плазма крови

В состав плазмы крови входят вода (90 – 92%) и сухой остаток (8 – 10%). Сухой остаток состоит из органических и неорганических веществ. К органическим веществам плазмы крови относятся белки, которые составляют 7 – 8%. Белки представлены альбуминами (4,5%), глобулинами (2 – 3,5%) и фибриногеном (0,2 – 0,4%). К органическим веществам плазмы крови относятся также небелковые азотсодержащие соединения (аминокислоты, полипептиды, мочевина, мочевая кислота, креатинин, аммиак). В плазме крови содержатся также безазотистые органические вещества: глюкоза 4,4 – 6,6 ммоль/л (80 – 120 мг%), нейтральные жиры, липиды, ферменты, расщепляющие гликоген, жиры и белки, проферменты и ферменты, участвующие в процессах свертывания крови и фибринолиза. Неорганические вещества плазмы крови составляют 0,9 – 1%. К этим веществам относятся в основном катионы Nа+, Са2+, К+, Mg2+ и анионы Сl-, НРО42-, НСО3-. Ионы обеспечивают нормальную функцию всех клеток организма, в том числе клеток возбудимых тканей, обусловливают осмотическое давление, регулируют рН. В плазме постоянно присутствуют все витамины, микроэлементы, промежуточные продукты метаболизма (молочная и пировиноградная кислоты).

Форменные элементы крови

К форменным элементам крови относятся эритроциты, лейкоциты и тромбоциты.

Кровь как жидкая ткань организма характеризуется множеством констант, которые можно разделить на мягкие и жесткие.

Мягкие (пластичные) константы крови - константы, которые могут отклоняться (изменять свою величину) от константного уровня в относительно широких пределах без существенных изменений жизнедеятельности клеток и, следовательно, функций организма. К мягким константам относятся: количество циркулирующей крови, соотношение объемов плазмы и форменных элементов, количество форменных элементов, количество гемоглобина, скорость оседания эритроцитов, вязкость крови, относительная плотность крови и др.

1. Количество крови, циркулирующей по сосудам. Общее количество крови в организме составляет 4-6 л, из них в состоянии покоя циркулирует около половины, другая половина (45-50 %) находится в депо (в печени до 20%, в селезенке до 16%, в кожных сосудах до 10%).

2. Соотношение объемов плазмы крови и форменных элементов. Это соотношение определяется путем центрифугирования крови в специальном капилляре с делениями - гематокрите. В нормальных условиях оно составляет 45% форменных элементов и 55% плазмы. Плазма, лишенная фибриногена, называется сывороткой.

3. Содержание форменных элементов, крови. Эритроцитов у мужчин 4,0-5,0х1012 /л, у женщин 3,9-4,7х1012 /л; лейкоцитов 4,0-9,0х109/л; тромбоцитов 180-320х109.

4. Количество гемоглобина. У мужчин - 130-160 г/л, у женщин - 120-140 г/л.

5. Скорость оседания эритроцитов (СОЭ): у мужчин - 2-10 мм/ч, у женщин - 2-15 мм/ч. Скорость оседания эритроцитов зависит от многих факторов: количества эритроцитов, их морфологических особенностей, величины заряда, способности к агломерации (агрегации), белкового состава плазмы. На скорость оседания эритроцитов влияет физиологическое состояние организма. Так, например, при беременности, воспалительных процессах, эмоциональных напряжениях и других состояниях скорость оседания увеличивается.

6. Вязкость крови. Она обусловлена наличием белков и эритроцитов. Вязкость цельной крови равна 5,0 (если вязкость воды принять за 1), плазмы - 1,7-2,2.

7. Удельный вес (относительная плотность) крови зависит от содержания форменных элементов, белков и липидов. Удельный вес цельной крови равен 1,050-1,060, плазмы - 1,025-1,034.

Жесткие константы крови, их колебание допустимо в очень небольших диапазонах, т. к. отклонение на значительные величины приводит к нарушению жизнедеятельности клеток или функций целого организма. К жестким константам относятся: постоянство ионного состава крови, количество белков в плазме, осмотическое давление крови, количество глюкозы, количество кислорода и углекислого газа, кислотно-основное равновесие (рН) крови и др.

1. Постоянство ионного состава крови. Общее количество неорганических веществ плазмы крови составляет около 0,9%. К этим веществам относятся: катионы (натрия, калия, кальция, магния) и анионы (хлора, НРО42-, НСО3-), причем, содержание катионов является более жесткой величиной, чем содержание анионов.

2. Количество белков в плазме.

Общее количество белков в плазме составляет 7-8%. Белки плазмы различают по строению и функциональным свойствам. Их делят на три основные группы: альбумины (4,5%), глобулины (1,7-3,5%) и фибриноген (0,2-0,4%).

3. Осмотическое давление крови.

Осмотическое давление крови равно 7,6 атм. Оно зависит в основном от содержания солей и воды в плазме крови и обеспечивает поддержание на физиологически необходимом уровне концентрации различных веществ, растворенных в жидких средах организма.

Часть осмотического давления, создаваемая белками плазмы, составляет так называемое онкотическое давление, величина которого равна 0,03-0,04 атм или 25-30 мм рт. ст. Онкотическое давление является фактором, способствующим переходу воды из тканей в кровяное русло.

4. Содержание глюкозы. В нормальных условиях оно равно 3,3-5,5 ммоль/л.

5. Содержание кислорода и углекислого газа в крови. Артериальная кровь содержит 18-20 об % кислорода и 50-52 об % углекислого газа, в венозной крови кислорода 12 об % и углекислого газа 55-58 об %.

6. Кислотно-основное равновесие крови. Активная реакция крови обусловлена соотношением водородных и гидроксильных ионов и является жесткой константой, так как только при строго определенном кислотно-основном равновесии возможно нормальное протекание обменных процессов. Для оценки активной реакции крови используют водородный показатель или рН крови, равный 7,36 (артериальной крови 7,4, венозной - 7,35).

Удержание констант крови на определенном уровне осуществляется по принципу саморегуляции, что достигается формированием соответствующих функциональных систем.
3. Плазма крови: состав, осмотическое и онкотическое давление. Механизмы регуляции постоянства осмотического и онкотического давления.
В состав плазмы крови входят вода (90—92%) и сухой остаток (8—10%). Сухой остаток состоит из органических и неорганических веществ.

К органическим веществам плазмы крови относятся: 1) белки плазмы — альбумины (около 4,5%), глобулины (2—3,5%), фибриноген (0,2—0,4%). Общее количество белка в плазме составляет 7—8%;

2) небелковые азотсодержащие соединения (аминокислоты, полипептиды, мочевина, мочевая кислота, креатин, креатинин, аммиак). Общее количество небелкового азота в плазме (так называемого остаточного азота) составляет 11 —15 ммоль/л (30—40 мг%).

3) безазотистые органические вещества: глюкоза — 4,4—6,65 ммоль/л (80—120 мг%), нейтральные жиры, липиды;

4) ферменты и проферменты: некоторые из них участвуют в процессах свертывания крови и фибринолиза, в частности протромбин и профибринолизин. В плазме содержатся также ферменты, расщепляющие гликоген, жиры, белки и др.

Неорганические вещества плазмы крови составляют около 1 % от ее состава. К этим веществам относятся преимущественно катионы — Ка+, Са2+, К+, Мg2+ и анионы Сl, НРO4, НСО3

Осмотическое давление обусловлено электролитами и некоторыми неэлектролитами с низкой молекулярной массой (глюкоза и др.). Чем больше концентрация таких веществ в растворе, тем выше осмотическое давление. Осмотическое давление плазмы зависит в основном от содержания в ней минеральных солей и составляет в среднем 768,2 кПа (7,6 атм.). Около 60% всего осмотического давления обусловлено солями натрия.

Онкотическое давление плазмы обусловлено белками. Величина онкотического давления колеблется в пределах от 3,325 кПа до 3,99 кПа (25—30 мм рт. ст.). За счет него жидкость (вода) удерживается в сосудистом русле. Из белков плазмы наибольшее участие в обеспечении величины онкотического давления принимают альбумины; вследствие малых размеров и высокой гидрофильности они обладают выраженной способностью притягивать к себе воду.

Солевой раствор, имеющий осмотическое давление, одинаковое с кровью, называют изоосмотическим, или изотоническим (0,85—0,9 % раствор NaCl). Раствор с более высоким осмотическим давлением, чем давление крови, получил название гипертонического, а имеющий более низкое давление — гипотонического.

4.Эртроциты: эритрон, гематокрит. Структурно-функциональная характеристика эритроцитов. Количество и функции эритроцитов. Изменения количества эритроцитов (эритроцитоз, эритропения).
Эритрон – система, включающая органы эритропоэза (красный костный мозг), эритроциты периферической крови, органы эритродиэреза (пульпа селезенки, костный мозг, клетки Купфера печени) и органы регуляции (почка, печень, костный мозг, эндокринная и нервная система).

Гематокрит — один из условных показателей, получаемый в результатах общего анализа крови, указывающий на процентное соотношение объема клеток крови в общем объеме крови. В норме гематокрит равен:

у мужчин

0,41—0,53

у женщин

0,36—0,46

У новорождённых

на 20% выше чем у взрослого

у маленьких детей

на 10% ниже, чем у взрослого
1   ...   5   6   7   8   9   10   11   12   ...   32


написать администратору сайта